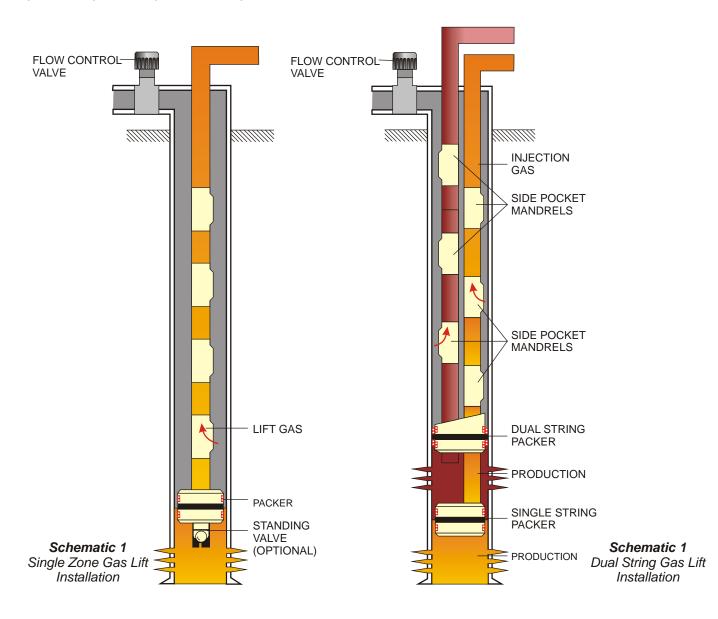
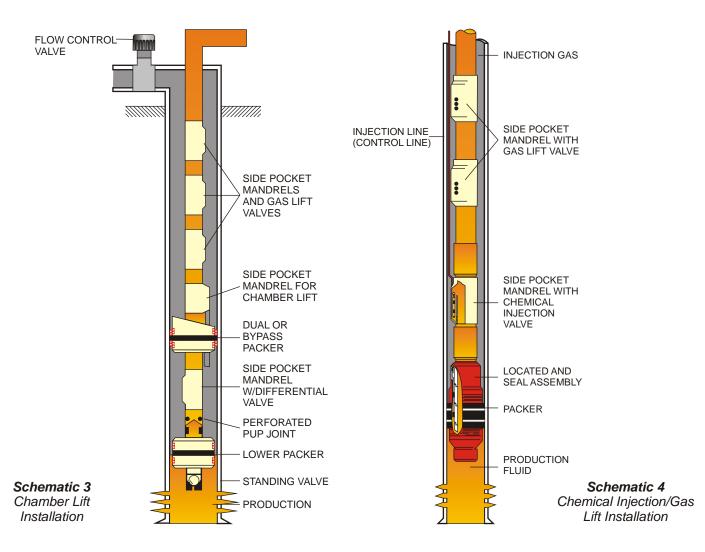


In order to boost production from wells, which do not flow at all or do not flow at optimum level, artificial system using a variety of methods are used. These methods use Gas Lift, Plunger Lift, Chamber Lift, Rod Pumps, Submersible Pumps and so on. PARVEEN provides a complete line of Equipment and Services for such applications, e.g. Gaslift, Plunger Lift and Chamber Lift.

Which artificial method will be most effective for a particular well can be determined by evaluating several factors such as well's production potential, Gas/Oil ratios, well bore deviation and size as well as corrosion / erosion potential of produced fluids. Other factors include availability of power source such as compressed gas, electricity, surface facility, service availability, space limitation and personnel capabilities.


The diagram below provides the basic components of a Gas lift System. In many fields, a high pressure well provides a readily available energy source. If sufficient gas pressure or volume is not available, a compressor can be utilized to operate a closed system. The Gas is recirculated through a compressor facility. Only minor amount of make up gas is needed to replenish gas lost in separation processing or as fuel for compressor facilities.

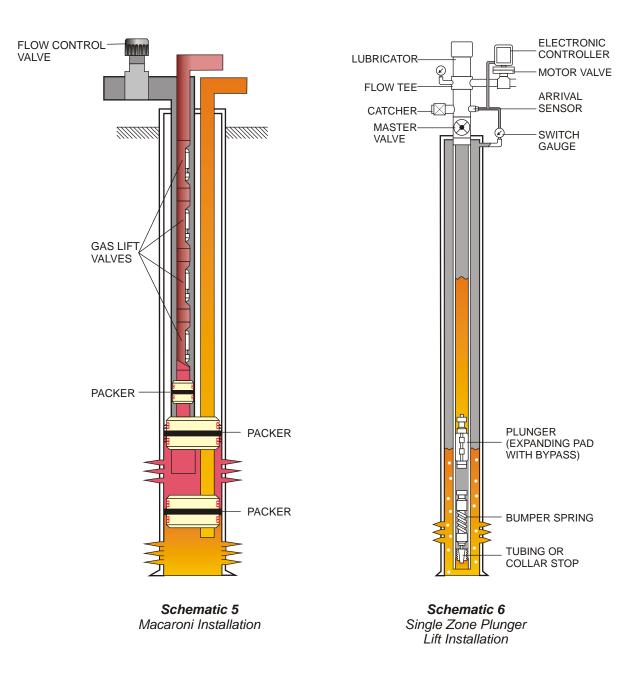


<u>Schematic 1-</u> The single string Gas lift completion for intermittent lift applications utilizes a standing valve near bottom of the tubing to prevent Gas pressure surges against the reservoir during cyclic operations. A single zone continuous lift installation would not require a standing valve but otherwise it will be identical. In either application Conventional or Side Pocket Mandrel can be used. Side Pocket Mandrels are designed to provide the facility of removing and replacing Gas Lift Valves without removing the tubing. These service operations are performed either by using wireline, through flow line (TFL) or coiled tubing methods depending on the completion configuration. Wire line installations are more economical for servicing wells with vertical access, especially remote, offshore or other hard - to - reach locations, since wireline units are light and portable. TFL and coil tubing service methods can provide production maintenance for wells that require tubing loops, such as ocean floor completions, highly deviated wells, extremely deep wells and any well where there is no straight or vertical access for wireline service.

<u>Schematic 2 -</u> This illustrates dual-string installations where Gas Lift Valves lift fluids from two zones using gas from a common annulus. An installation can be designed, with proper well information to produce and carry both zones to depletion. The conditions affecting dual string design are casing size, distance between zones, well bore deviation, continuous or intermittent lift and operator's preference. Gas lift valves should be of proportional response or production pressure operated if the operation has to be trouble free.

<u>Schematic 3</u> In the chamber lift system, one normally utilizes two packers, a standing valve, a perforated pup above the bottom packer, and a differential vent valve just below the top packer in addition to the Gas Lift Valve necessary to unload and produce the well.

While the bottom injection pressure operated valve is closed, the standing valve is open. Fluid fills both the tubing and annular space (chamber) between the two packers. The differential valve is open, and allow gas in the top of the annular part of the chamber to bleed into the tubing as the chamber fills. When the chamber has filled to the point that the liquid level is near the differential valve, the operating gas lift valve opens. A calculated gas volume enters the top of the chamber, closing the bleed valve and standing valve, forcing accumulated liquids to U-tube from the chamber to the tubing. Liquids are produced as a slug to the surface. As the tubing is cleared, the operating gas lift valve closes, the standing valve and bleed valve open, and liquids again refill the chamber. The cycle then repeats.


If properly planned, a chamber lift system permits a larger volume of fluid to be produced by intermittent lift from wells with a high productivity index and low-to medium bottom hole pressure.

<u>Schematic 4</u>- In certain cases, Chemical injection is desirable to be coupled with Gas Lift. Side Pocket Mandrels may be run at pre-determined depths for Gas lift valves to be installed. An additional mandrel with a chemical injection valve and injection line may also be run to desired depth on the same tubing string. Tubing / Casing annulus can be used for gas injection and the injection line for chemical injection.

<u>Schematic 5</u> - Macaroni tubing installation work well in either intermittent or continuous Gas Lift System. Essentially the installation is same as a single zone installation except the size of the macaroni string is the limiting factor due to ultra-slim hole conditions. It is an ideal method of artificial lift for slim hole completions.

<u>Schematic 6</u>- This fig. shows a simple installation without packer application for unloading fluids in a gas well. Plunger lift systems can effectively produce high GOR wells, water producing gas wells, or very low bottom hole pressure oil wells (used with gas lift). Depending upon individual well requirements surface/subsurface equipment varies. Installation may or may not require a packer and/or additional gas.

INJECTION PRESSURE OPERATED GAS LIFT VALVE

DESCRIPTION

Parveen N Series Valves utilize a nitrogen charged dome and bellow configuration designed for either continuous or intermittent flow applications. They are especially suitable for use as unloading and operating valves in areas where high gas lift pressures are available. Since the charge pressure above the bellows is affected by temperature, it is important that the operating temperatures at the valve be known. These valve are available in both wireline-retrievable and conventional installations.

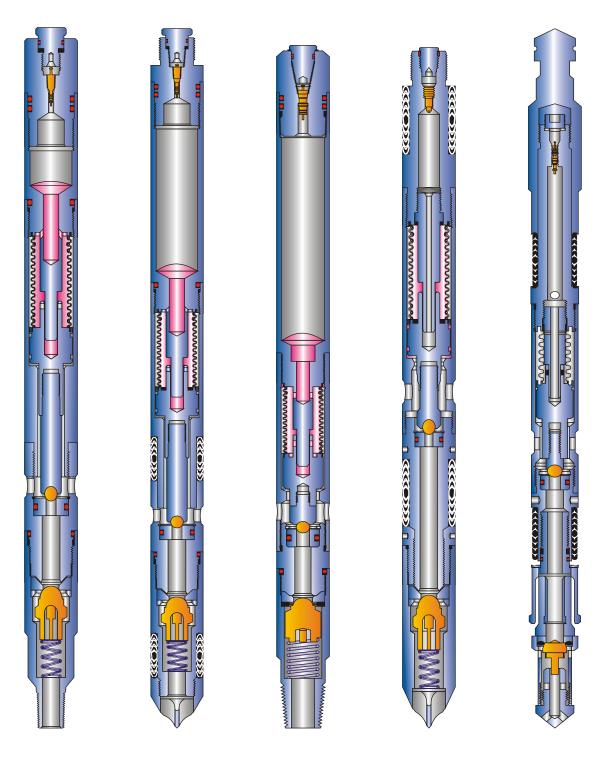
BENEFITS

Vibration protected, 3-ply monel bellow are designed to withstand hydrostatic pressure up to 5000 psi.

Nitrogen dome charge, acting on the O.D. of the bellow, permits bellows to expand uniformly without stacking, thus prolonging bellow's life.

The multiple port size availability, make this valve series appropriate for a wide range of operating conditions.

Reversible seat available in several different materials.


OPERATING PRINCIPLE

The dome nitrogen charge applied to the external area of the bellows provides the downward force, holding the valve on its seat. This dome pressure is preset at the reference temperature and corrected to operating temperature. The opening forces on the valve are the casing pressure acting on the internal area of the bellows (less the area of the seat) and the tubing pressure acting on the seat area. When the combined casing and tubing pressures are sufficient, the valve opens. Once the valve is open, it remains open until the casing pressure is reduced to the predetermined closing pressure. The spread (the difference between opening and closing casing pressure) is controlled by the tubing sensitivity of the valve. The larger the seat port area, the more tubing sensitive the valve is.

	ENGINEERING DATA FOR INJECTION PRESSURE OPERATED VALVES												
TYPE	ASSY. NO.	NOMINAL	PACKI	NG OD	PORT SIZE		LATCH OR	RUNNING	PULLING	MANDREL			
		OD	(IN	СН)	(INCH)		END CONN.	TOOL	TOOL	TYPE			
		(INCH)	UPPER	LOWER	MIN	MAX		TYPE	TYPE				
N-90	122-10XX-XXX-XO	1-1/2	-	-	1/8	1/2	1" or 1/2" NPT	-	_	SERIES 15			
N-90R	122-10XX-XXX-X1	1-1/2	1-9/16	1-1/2	1/8	1/2	TG, RK, RM, T-2	RTG, TER	PTG, TRP	TP, MM, MMA, MMG			
NM-90	122-20XX-XXX-XO	1	-	-	1/8	3/8	1/2" NPT	-	-	SERIES 12			
NM-90R	122-20XX-XXX-X1	1	1-1/32	1-1/32	1/8	3/8	BK-2, M	MR	MP	TMP, KBM, KBMG, KBG			
PBK-1	122-90XX-XXX-X1	1	1-1/32	1-1/32	1/8	3/8	Integral Bottom	GA-2	MP	TMP, KBM, KBMG, KBG			

INJECTION PRESSURE OPERATED GAS LIFT VALVE

N-90

N-90R

NM-90

NM-90R

PROPORTIONAL RESPONSE GAS LIFT VALVES

L SERIES VALVES

PARVEEN L Series Valves are temperature independent, wireline-retrievable, spring-loaded throttling type valves designed for continuous flow gas lift applications. These valves are designed to help adjust the required gas injection rate in response to changes in the tubing pressure at the valve, injecting more gas for a heavy gradient fluid than for a light gradient fluid. This proportional response allows the injection of the optimum volume of gas to maintain the desired fluid lifting capabilities of the installation.

BENEFITS OF DESIGN PRINCIPLE

- Predictable proportional response operating characteristics of this design, permit the optimum volume of gas to pass from the annulus to the tubing in response to fluctuations in production pressure.
- Hydrostatic and vibration protection for the Monel bellows assembly increases valve service life.
- Tungsten carbide ball and seat are designed to minimize erosion and maintain positive closure of the valve.
- Large diameter back check valve is designed with resilient seals to provide protection from intrusion of production fluids into annulus.
- Utilizes full operating gas pressure to the bottom valve.

STANDARD SERIES MODELS

<u>LM-16R</u>: 1-inch diameter wireline-retrievable valve for installation in a TMP Mandrel with BK-2 or M Latch. L-12R: $1\frac{1}{2}$ - inch diameter wireline-retrievable valve for installation in a TP Mandrel with a TG, RK, RM or T2 Latch.

LN SERIES VALVES

PARVEEN LN Series Valves are wireline-retrievable throttling type valves designed for high gas volume and high pressure continuous flow installations. A specialized bellows design allows for very high valve set pressures and improved throttling characteristics. The proportional response capabilities, determined by dynamic flow tests of these valves, enable design engineers to calculate accurately the gas injection volumes to be achieved throughout the anticipated range of operating conditions of the well.

BENEFITS OF DESIGN PRINCIPLE

- Predictable proportional response operating characteristics of this design, permit the optimum volume of gas to pass from the annulus to the tubing in response to fluctuations in production pressure.
- Hydrostatic and vibration protection for the Monel bellows assembly increases valve service life.
- Valve closing pressures can be set to 2500 psi.
- LN-21R valve can inject maximum gas volumes of over 10 mmcf/d.
- Tungsten carbide ball and seat are designed to minimize erosion and maintain positive closure of the valve.
- Large diameter back check valve is designed with resilient seals to provide protection from intrusion of production fluids into annulus.

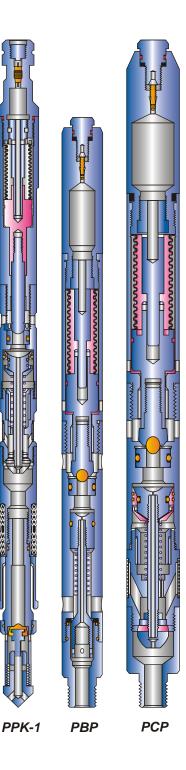
STANDARD SERIES MODELS

LN-21R: 1 ½ inch wireline-retrievable, proportional response valve for a TP Mandrel with a TG, RK, RM or T2 Latch. **LNM-31R:** 1 inch wireline-retrievable, proportional response valve for a TMP Mandrel with a BK-2 or M Latch.

PILOT - OPERATED GAS LIFT VALVES

DESCRIPTION

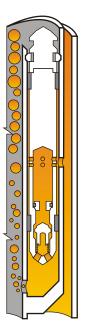
The PARVEEN Conventional Pilot Valve (1"&1.1/2"O.D) and Retrievable Pilot Valve(1"O.D.) consists of a pilot section and a power section. This valve utilizes a pilot section to activate a power section. A sealed chamber, including a multiply monel bellow, contain a nitrogen pressure charge over a dampening fluid which provides the closing forcenecessary to maintain the pilot section in a normally closed position and an incomel spring provides the force necessary to maintain the power section normally in a closed position.

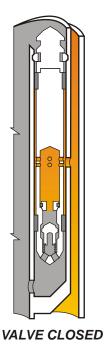

OPERATION

Injection gas first enters the pilot section of the valve and acts on the effective bellows area. When injection gas pressure exceeds the closing force (due to precharged nitrogen gas pressure in the bellows), the bellow compresses, lifting the pilot valve stem off the seat to open the pilot section and thus allows gas to be injected on top of the power piston. The differential between injection gas pressure and productionfluid pressure, working on the annulus area between the power piston and port areas overcomes the spring closing force of the power section piston. This differential pressure opens the power section, allows injection gas to flow through the valve, past the reverse flow check valve into the production fluid through production conduit. When pilot section closes due to injection gas pressure drop, the injection gas pressure on top of the power section.

APPLICATION

Pilot operated valves are used primarily for intermittent gas lift where large, instantaneous injection gas volumes between opening and closing injection gas pressure are desired. The pilot valve can also be used where intermittent lift is requiredbut injection gas must be controlled by a choke to prevent surface gas system pressure fluctuations.


ENG	ENGINEERING DATA FOR RETRIEVABLE PILOT OPERATED GAS LIFT VALVE.											
Туре	Assly Number.	Nominal O.D.	Latch	Runnir	ng Tool	Pullin	Mandrel Series.					
	(Inch)		Туре	Assly No.	Туре	Assly No.	Series.					
PPK-1	140-20 -XX-XXX -01	1	Integral Bottom	GA-2		MP	11361	TMP, KBM, KBMG, KBG.				


ENGINEERING DATA FOR CONVENTIONAL PILOT OPERATED GAS LIFT VALVE.
--

Туре	Assly Number.	Nominal O.D. (Inch)	Connecting Thread
PBP	140-20 XX-XXX -00	1	1/2"- 14 NPT
PCP	140-10 XX-XXX -00	1-1/2	1/2"- 14 NPT

VALVE OPEN

PARVEEN O Series valves are designed for circulating operations and provide means for communication between the tubing and the tubing/casing annulus.

BENEFITS OF DESIGN PRINCIPLE

O SERIES ORIFICE VALVES

- Cv values for each orifice size are determined with ISA procedures to provide accurate sizing for proper injection rates.
- Efficiency of back check valve provides large flow capacities. Positive sealing feature of back check valve provides protection from intrusion of production fluids into casing annulus.
- Various orifice materials (SS, monel, inconel, tungsten carbide) available to meet application requirements.

OPERATING PRINCIPLE

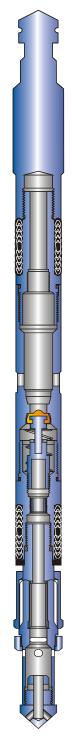
This valve series design utilizes an orifice (choke) as well as a back check valve for continuous flow operations. Injection fluid or gas enters through the entry ports and through an orifice. Injection pressure moves the back check valve off seat allowing gas or fluids to enter into the tubing. Reverse flow pushes the check valve on seat to prevent flow into the casing.

For injection of fluids or gas from the tubing to the tubing/casing annulus, the design can be modified by replacing the upper packing elements with a spacer. This allows the flow to enter from the top, passing through the valve via the back check and out the bottom of the valve and into the tubing/casing annulus. With this configuration, the valve is installed in a mandrel with a type S pocket which has no ports between the seal bore and vents to the casing/tubing annulus.

Orifice sizes available for this valve design range from 1/8 through 7/16 inch in the 1 inch. size and from 1/8 through 51/64 inch in the 1 $\frac{1}{2}$ inch size, thus making them suitable for a wide range of operating conditions.

	ENGINEERING DATA FOR ORIFICE VALVES														
Туре	Assy. No.	Norminal	Packing OD		Port Size		Latch Or	Running	Pulling	Mandrel					
		OD	(inch)		(ind	<u>ch)</u>	End Conn.	Tool	Tool	Туре					
		(inch)	Upper	Lower	Min.	Max.		Туре	Туре						
OM 14R	150-40	1	1-1/32	1-1/32	1/8	7/16	BK-2, M	MR	MP	TMP					
OM 20R	150-27	1	1-1/32	1-1/32	1/8	7/16	BK-2, M	MR	MP	TMP					
O20R	150-12	1-1/2	1-9/16	1-1/2	1/8	51/64	TG, RK, RM T-2	RTG, TER	PTG, TRP	TP					
OSM-14R	150-05	1	1 - 1/32	1 - 1/32	1/8	7/16	BKP	MR	MP	TMP					
OS 14R	150-08	1 - 1/2	1-9/16	1-1/2	1/8	51/64	TFA, PKP	RTG, TER	PTG, TRP	TP					

PKO GAS LIFT ORIFICE VALVE


DESCRIPTION

The PARVEEN (Model PKO) retrievable single point injection gas lift orifice valve s are used for continuous tubing flow gaslift installations. It is used to control the flow of gas between the casing annulus and the tubing at valve depth. The valve has a check dart controlled by a spring which does not allow the back flow of gas or well fluids. If the injection gas pressure in casing & tubing annulus at valve depth falls below the fluid tubing pressure, the fluid from tubing will try to flow back through the valve. Reverse flow through the valve is prevented by a check dart in the valve body. The check dart is closed by pressure from the tubing and will not allow passage of fluid until casing pressure is greater or equal than tubing pressure. This valve is available from 1/8" to 3/8" port sizes in 1/16" increments.

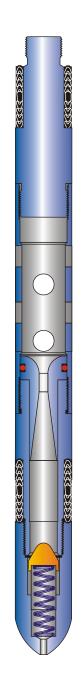
The valve can be installed in Parveen TM series Side Pocket Mandrel&have an integral bottom latch which locks the valve in the side pocket mandrel. After locatingthe valve in the side pocket mandrel, downward jarring is required which causes the collet dogs of the latch to engage the lock in the recess provided at the bottom of the Side Pocket. Upward jarring is required to pull the valve.Upward jarring shears the brass shear pin securing the shear ring to the latch body. During upward pulling of the valve in the side pocket the shoulder on the latch body moves out from behind the collet dogs.The collet fingers are deflected inward and disengage from the locking recess of the mandrel pocket. Then the valve is removed from the well.

Injection gas enters thru the external ports of the orifice valve from annulus between casing & tubing. 2 sets of packing located at the top & bottom of external ports on the valve seals across the ports in side pocket mandrel. The injection gas travels through the choke, past the reverse flow check valve and finally into the production conduit.

	ENGINEERING DATA FOR PKO GAS LIFT ORIFICE VALVES.												
Туре	ype Assly Nominal Latch Number. 0.D. (Inch)		Latch	Runni	ng Tool	Pullir	Mandrel Series.						
				Туре	Assly No.	Туре	Assly No						
РКО	130-30 XX-XXX -01	1	Integral Bottom	MR-01	10336-01	MP	11361	TMP, KBM, KBMG, KBG.					

PKO GAS LIFT ORIFICE VALVE

WIRELINE RETRIEVABLE SUPER FLOW ORIFICE VALVE


DESCRIPTION

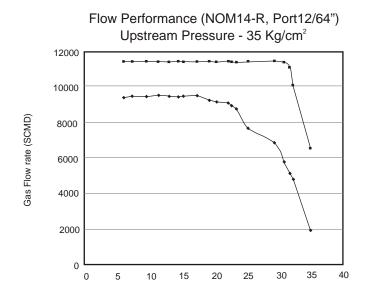
Parveen 1" & 1- 1/2" OD wireline retrievable injection gas lift super flow orifice valves are used for continuous flow application. These are designed for circulating operations and provide a means of flow from casing to annulus through orifice and then into the tubing.

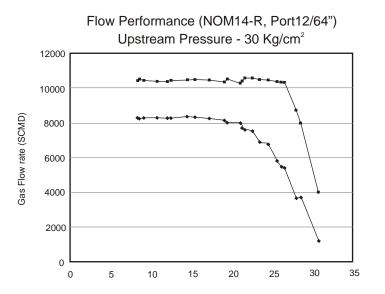
Parveen super flow orifice valve achieve maximum flow with less pressure drop w.r.t conventional orifice valves. The injection rate from new orifice valve is almost constant because the valve operates in maximum flow mode. Therefore the injection volume does not depend upon tubing pressure. In comparison with this feature, the injection volume thru conventional orifice valve is unstable be cause of the tubing pressure effect.

OPERATION

Super flow orifice valve utilizes an orifice venturi as well as a back check valve for continuous flow operations. Injection fluid enter through the entry ports and then flow through orifice venturi. Injection pressure moves the back check valve off the seat & thus all owing fluids to enter into the tubing. Reverse flow pushes the check valve on seat to prevent flow into the casing.

RETRIEVABLE SUPER FLOW ORIFICE VALVE


	ENGINEERING DATA FOR RETRIEVABLE SUPER FLOW ORIFICE VALVE												
1 1900	Assy.	Nominal O.D. (Inch)	Packing O.D. (Inch)		Port Size (Inch)		Latch or	Running	Pulling	Mandrel			
	Number		Upper	Lower	Min.	Max.	End Conn.	ТооІ Туре	Tool Type	Туре			
NOM 14R	N150-04	1	1-1/32	1-1/32	1/8	5/16	BK-2,M	MR	MP	TMP			
NO 20R	N150-12	1-1/2	1-9/16	1-1/2	1/8	51/64	TG,RK,RM	RTG, TER	PTG, TRP	TP			



FLOW CHARACTERISTICS OF SUPER FLOW ORIFICE VALVE

Parveen has Successfully developed after conducting extensive in house research Super Flow Orifice Valve which is a one step ahead of Conventional Orifice Valve available in the market. It's performance is dynamically tested by Institute of Oil & Gas Production Technology, ONGCL, Panvel, Mumbai, India.

Flow Performance Curve of NOM - 14R Orifice Valve (Port - 12/64") against different Upstream Pressures i.e. 30 Kg/cm² & 35 Kg/cm² are depicted below and comparison with Conventional Square Edge Orifice Valve are also shown below.

ANALYSIS OF RESULTS

- The Critical Flow rate was achieved at approx 0.878-0.879 pressure ratio of Down Stream Pressure to Upstream Pressure i.e. at a pressure differential of 12% compared to almost 50% in case of a Standard Orifice in Conventional Orifice Valve.
- 2) The Actual Critical Flow rates obtained through the testing were approximately 20% higher than the calculated theoretical flow rates.

PDO-5 GAS LIFT ORIFICE VALVE

DESCRIPTION

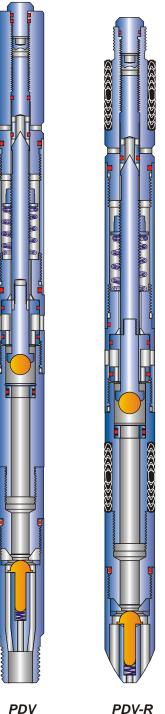
The PARVEEN(Model PDO-5)1.1/2" O.D. retrievable single point injection gas lift orifice valves are used for continuous tubing flow gas lift installations. It is used to control the flow of gas between the casing/tubing annulus and the tubing at valve depth. The valve has a check dart controlled by a spring which does not allow the backflow of gas or well fluids.

An integral floating choke controls the flow of gas through this valve (which is open normally) into the production conduit. This valve is available from 3/16" to 3/4"port sizes in 1/16" increments.

This valve design utilizes an orifice (choke) as well as a backcheck valve for continuous flow operations. Injection fluid or gas enters through the entry ports and through an orifice. Injection pressure moves the back check valve off seat allowing the gas or fluids to enter into the tubing. Reverse flow pushes the check valve on seat to prevent flow into the casing.

	ENGINEERING DATA FOR PDO-5 GAS LIFT ORIFICE VALVE.											
Туре	Type Assly Nor Number. O		Latch	Runnii	n g Tool	Pullin	Mandrel Series.					
		(Inch)		Туре	Assly No.	Туре	Assly No					
PDO-05	150-30 XX-XXX -01	1.1/2	R, RA, RK.	RTG TER	16927 11730	PTG TRP	17048 11390	TP, MMA, MMG.				

PDO-5 GAS LIFT ORIFICE VALVE


DIFFERENTIAL VALVE

DIFFERENTIAL VALVE

This valve is used as the bleed valve in chamber lift installation for bleeding the tail chamber gas from the chamber, which allows for the formation to refill the chamber. The valve is normally open and closes when differential pressure closes against the calibrated spring.

FUNCTION

When chamber is empty, there is a reduction in chamber pressure. Due to this differential, valve opens which allows the passage of gas from the top of chamber and prevents trapping of gas in top of the chamber. When gas pressure on the top of the liquid in the chamber increases, the spring compresses & valve closes.

	ENGINEERING DATA FOR DIFFERENTIAL VALVE											
Туре	Assy. Number	Nominal O.D.	Packin (Ind	ig O.D. ch)		Running Too						
		(Inch)	Upper	Lower	End Conn.	Туре	Туре	Туре				
PDV	160-1024-320-00	1	1-1/32	1-1/32	-	-	-	Series -12				
PDV-R	160-1024-320-01	1	1-1/32	1-1/32	BK-2, M	MR	MP	TMP				

D Series Valves are installed in side pocket mandrels by wireline to block the mandrel's injection gas ports. Dummies can be run prior to or after completion for testing tubing, packers and other equipment. In new installations, dummies can be retained in the mandrels until gas lift valves are required to maintain production. Then, dummies are pulled and gas lift valves installed by wireline. Also during the life of the well, gas lift valves installed above the fluid level can be replaced with dummies to block off injection gas. They are available in 1 and 1½ inch sizes.

DUMMY AND EQUALIZING VALVES

ED Series Equalizing Valves with integral latches are designed to equalize tubing and casing pressure and or to circulate prior to pulling the valve. They are also available in both 1 and $1\frac{1}{2}$ inch sizes.

To equalize pressure, a pulling tool pushes the inner core downward, shearing a pin and allowing circulation or equalization. When the core moves down, the pulling tool collets latch over the fish neck and the valve is pulled in the usual manner. This tool is designed so that both equalizing and pulling operations can be performed in one wireline run. It is also possible to leave the valve in the side pocket mandrel for continued circulation. This is accomplished by shearing down on the inner core with a special tool. The valve may be pulled out at a later date with a standard pulling tool.

STANDARD SERIES MODELS

D-14R: 1 % inch wireline-retrievable dummy value for TG or T Mandrels with TG, RK, RM and T2 Latches.

DM-14R: 1 inch wireline-retrievable dummy valve for TM Mandrels with BK-2 and M Latches.

DT-14R: 1½ inch wireline-retrievable, high-temperature dummy valve for TG or TP Mandrels with TG, RK, RM and T2 Latches.

DTM-14R: 1inch wireline-retrievable, high-temperature dummy valve for TMP Mandrels with BK-2 and M Latches.

- ED-30R: 1¹/₂ inch wireline-retrievable equalizing dummy valve for TG or TP Mandrels with an integral Latch.
- **EDM-30R:** 1 inch wireline-retrievable equalizing dummy valve for TMP Mandrels with an integral BK-2 Latch.
- Both of these valves may be equalized and pulled with one wireline run.

		ENGINEE	RING DAT	A FOR D &		DUMMY VAL	VES	
Туре	Assy. No.	Nominal	Packing OD		Latch Or	Running	Pulling	Mandrel
		OD	(in	ch)	End Conn.	Tool	Tool	Туре
		(inch)	Upper	Lower		Туре	Туре	
D 14R	170-03	1-1/2	1-9/16	1-1/2	TG, RK, RM	RTG,	PTG,	TP
					T2	TER	TRP	
DM 14R	170-01	1	1-1/32	1-1/32	BK-2, M	MR	MP	TMP
DT 14R	170	1-1/2	1-9/16	1-1/2	TG, RK, RM	RTG, M,	PTG,	TP
					T-2	TER	TRP	
DTM 14R	170-02	1	1-1/32	1-1/32	BK-2, M	MR	MP	TMP
ED 30 R	170-XXX	1-1/2	1-9/16	1-1/2	TGP, RKP,	RTG,	PTG,	TP
					TFA	TER	TRP	
EDM 30 F	R 170-08	1	1-1/32	1-1/32	BKP	MR	MP	TMP

1½ inch Dummy Valve

PDK-1 WIRELINE RETRIEVABLE DUMMY VALVE

FUNCTION

The PARVEEN wireline Retrievable Dummy Valves (PDK -1) have 2 sets of packingwhich fit in theseal bore of side pocket mandrel and isolate the casing ports betweentubingandcasingannulus. In otherwords the valves are used to prevent communication between the tubing and the casing.

APPLICATION

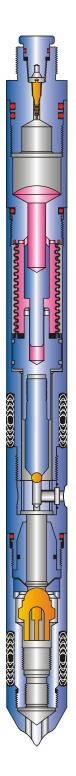
These Valves are used in side pocket mandrel to provide a positive seal between casing - tubing annulus and to protect the mandrel seal bore until they are retrieved by standard wireline methods. When installed, the PDK-1 Dummy Valves eliminates unintentional placement of the other tools or debris in the mandrel pocket.

ENGIN	ENGINEERING DATA FOR WIRELINE RETRIEVABLE (PDK-1) DUMMY VALVES.												
Туре	Assy. Number	Nominal O.D.		ng O.D. Ich)	Latch or End Conn.	Running		Mandrel					
	Number	(Inch)	Upper	Lower	End Conn.	тоот туре	тоот туре	Туре					
PDK - 1	170-09	1	1-1/32	1-1/32	Integral Bottom	GA - 2	MP	TMP					

PDK-1

RETRIEVABLE PRODUCTION - PRESSURE OPERATED GAS LIFT VALVES

DESCRIPTION


Parveenwireline retrievable production pressure operated GLV's areusedforcontinuous flow gas lift production. A nitrogen charged multiply monel bellow provides the force necessary to maintain valve in a normally closed position. This valve contain integral reverse flow check valve.

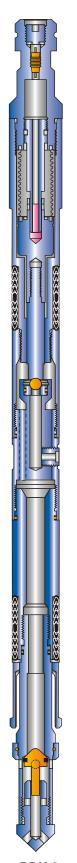
Port sizes available are 3/16",1/4" & 5/16"

OPERATION

Production fluid enters the valve and acts on the effective bellow area. The production pressure necessary to compress the bellow is controlled by precharged nitrogen pressure. When production pressure overcomes the precharged nitrogen pressure in the bellow, the bellow is compressed and lifts the stem tip off the seat. Injection gas flows through the seat, past the reverse flow check valve and into the production conduit.

ENGINEERING DATA FOR RETRIEVABLE PRODUCTION-PRESSURE VALVE .									
Туре	Assly Nominal Latch Running Tool Number. O.D.				Pullin	Mandrel Series,			
		(Inch)		Туре	Assly No.	Туре	Assly No		
PR 5	160-40 XX-XXX -01	1.1/2	R, RA, RK.	RTG, TER	16927 11730	PTG, TRP	17048 11390	MM, MMA, MMG.	

PR-5 GAS LIFT VALVE


RETRIEVABLE PRODUCTION - PRESSURE OPERATED GAS LIFT VALVES

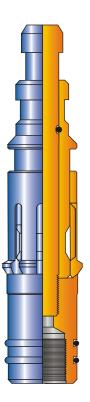
DESCRIPTION

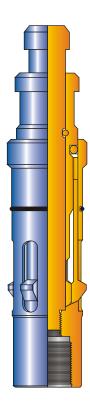
PARVEEN1"ODPBK-2isretrievable, production pressure operated Gas Lift Valves which is used in continuous flow gas lift installations. The PBK-2 valve is bellow actuated with nitrogen gas which normally keep the valve inclosed position. This valve is having integral reverse flow check valve crossover seat & floating seat. Port sizes available are 1/8", 3/16" and 1/4". Optional choke is also available with this type of valve which can be easily fitted to the external surface of the valve and can be easily removed. The valve can be installed in Parveen TMP series Side Pocket Mandrel & have an integral bottom latch which locks the valve in the side pocket mandrel. After locating the valve in the side pocket, down ward jarring is required which causes the collet dogs of the latch body. During upward pulling of the valve in the side pocket, the shoulder on the latch body moves out from behind the collet dogs. The collet fingers are deflected in ward and disengage from the locking recessof the mandrel pocket. Then the valve will be free in the pocket of the mandrel and can be removed.

Production pressure enters through the valve nose and passed upward through cross over seat. The production pressure acts on the effective bellow area. As production pressure overcomesthepre-chargednitrogenpressure inthe bellows, the bellow compressed and lifts the stemoff the seat. The injection gas then flows through the seat, past the reverse flow check valve and into the production conduit. If the injection gas pressure in the casing & tubing annulus at valve depth falls bellow the valve set pressure, the valve is closed. Reverse flow through the valve is prevented by acheck dart in the valve body.

ENGINEE	ERING DAT	A FOR RE	TRIEVABL	E PRODU	CTION-PRE	ESSURE O	PERATED	VALVES.
Туре	Assly Number.	Nominal O.D.	Latch	Runnii	ng Tool	Pulling	Mandrel Series,	
		(Inch)		Туре	Assly No.	Туре	Assly No	
PBK-2	160-40 XX-XXX -01	1	Integral Bottom	MR-01	10336-01	MP	11361	TMP, KBM, KBMG, KBG.

PBK-2 GAS LIFT VALVE




LATCHES

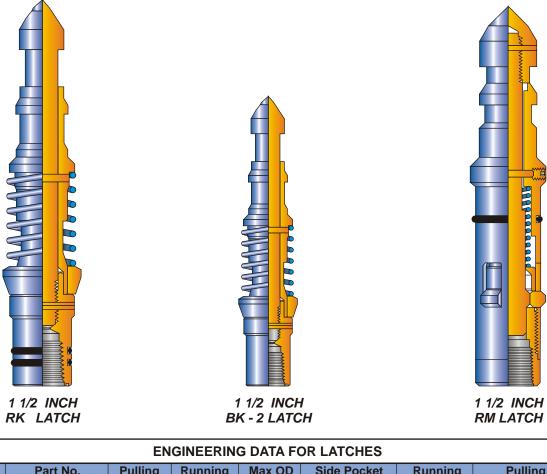
Latches are available in a wide range of designs for use with retrievable gas lift and circulation valves to be installed in side pocket mandrels. These latches are designed to be installed with a minimum of force, a feature very important in deviated wells where forceful downward jarring may be difficult. Side pocket mandrels feature two types of pocket latch profiles: the G-type which has a 180-degree eccentric latch ring profile with the no-go surface located near the lower end of the latch; and the A-type which has a 360 degree latch profile with the no-go surface above the locking mechanism, Latches used in each of these profiles are not interchangeable; however, valves and other flow control devices can be adapted from one profile to the other by selecting the correct latch.

1 ½ inch TG and 1 inch M Latches are designed for installation in G-type pocket mandrels. A set of collet type locking dogs are free to move up and into a recess in the locking mandrel as the latch engages the pocket profile. When an upward pull is exerted on the latch, the full diameter of the locking mandrel moves behind the dogs which locks them in the set position. To retrieve the valve and latch, an upward force is applied, which shears a pin. This action moves the locking the mandrel up, which frees the dogs to retract as the valve and latch are pulled.

1 ½ inch T2 Latches are designed for installation in A-type pocket mandrels. They utilize a set of collet type locking dogs configured inside a slotted sleeve. As the latch enters the pocket, the dogs move up and into a recess the locking mandrel. After reaching the no-go position, an upward pull causes the dogs to move over the locking mandrel and lock into the pocket recess. To release the locking dogs, an upward force is applied which shears a pin, moving the locking mandrel up. The latch and valve are then free to be retrieved.

1 1/2 - INCH T2 LATCH

1 1/2 - INCH TG LATCH


1 - INCH M LATCH

LATCHES

1 ½ inch RK and 1 inch BK-2 Latches are designed for installation in G-type pocket profile side pocket mandrels. They utilize a locking ring which is held in position by spring force. As the latch enters the side pocket profile, the locking ring moves up and into the recessed area of the latch. When the latch seats, the ring is positioned in the locking recess of the pocket. To retrieve the latch, a pin is sheared by upward force allowing the locking ring mandrel to move up and out of the way. The ring is then freed to disengage from the locking recess as the valve and latch are retrieved.

1 ¹/₂ inch RM Latches are designed for installation in A-type pocket profile mandrel. They have a set of spring-loaded locking dogs designed to move up into a recessed area on the latch core when run into the latch profile of the mandrel. The valve is lowered into the pocket until the no-go shoulder is reached. The spring force moves the locking ring downward, forcing the dogs to move over and onto the large O.D. of the inner mandrel, thus locking the valve in place. To release the latch, a pin is sheared by upward force which allows the inner mandrel to move up and out of the way. The locking dogs are then free to return to the recess area as the latch and valve are retrieved.

	ENGINEERING DATA FOR LATCHES										
Туре	Part No.	Pulling	Running	Max OD	Side Pocket	Running	Pulling				
		Neck OD	Neck OD		Accessory OD	Tool	Туре				
		(inch)	(inch)	(inch)	(inch)						
TG	230-1600-000-01	1.183	0.939	1.795	1.500	RK-1 / RTG	1-5/8 JDS / PTG				
RK	230-1200-000-01	1.185	0.936	1.787	1.500	RK-1 / RTG	1-5/8 JDS / PTG				
T2	230-0700-000-01	1.375	1.000	1.75	1.500	TER	2" JDC / SM / TRP				
RM	230-3000-000-01	1.375	1.000	1.75	1.500	TER	2" JDC / SM / TRP				
М	230-0200-000-01	0.875	0.750	1.335	1	MR	1-1/4 JDC / MP				
BK-2	230-2400-000-01	0.875	0.750	1.358	1	MR / JK	1-1/4 JDC / MP				
WFM	230-0400-000-01	0.875	0.750	1.335	1	MR/JK	1-1/4 JDC / MP				

Parveen Side Pocket Mandrels allow use of standard wireline tools for installation and retrieval of different types of flow control devices.

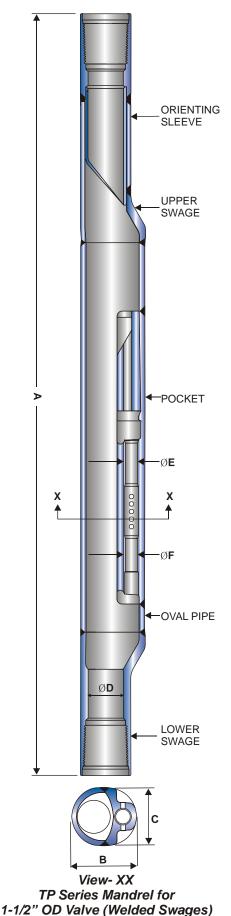
MATERIALS :

Generally Low Alloy Steel AISI 4130 is used. For corrosive application, AISI 410 is used. Other materials are used as per customer's requirement.

FORGINGS :

Pockets & tool discriminators are closed die forged and are integral part of the pocket. Swages are forged from seamless mechanical tubing or it can be machined from solid bar stock. Forgings are made by using a precision closed die process. All forged parts are visually and dimensionally inspected by Quality Control before machining.

MACHINING :


Pockets are machined using deep hole drilling & boring process that provides accurate polished bore diameters, alignment and better surface finish for packing seals. The swages are machined with precision accuracy. Threads are machined asper design specification. All components are dimensionally inspected.

WELDING HEAT TREATMENT :

Welding is done asper ASME Section VIII & IX with the use of proper welding electrodes. Full penetration welds take place when joining the swages and forged pocket are welded to the oval pipe. After welding, all external weld deposits are evenly grounded down to match the outside profile. All mandrels are heat treated, Quenched & Tempered to 18-22 HRC, for corrosive service and 24-38 HRC for standard service application.

ASSEMBLED MANDREL :

After heat treatment and threading each mandrel is tested for hardness, internal and external drift and pressure test. Additional testing i.e. dye penetrant, ultrasonic, magnetic particle and radiography can also be provided as per customer requirement.

	ENGINEERING DATA FOR SIDE POCKET MANDRELS										
Tubing	Valve	Ma	Indrel				sions (Inc	:h)			Assembly Part No.
Size	OD	Туре	Shape	Length*	-	Minor OD	I.D	Drift	ØE	ØF	a.) With Welded Swages
(Inch)	(Inch)			Α	В	С	ØD	Dia	E	F	b.) With Integral Swages
2-3/8	1.0	TMP	OVAL	83	4.25	2.92	2.00	1.901	1.027	1.027	a.) 238X1-D1901-SXXXX-XXW-X b.) 238X2-D1901-SXXXX-XXI-X
2-3/8	1.5	TP	OVAL	102	4.75	4.00	2.00	1.901	1.6	1.5	a.) 238X2-D1901-SXXXX-XXW-X b.) 238X1-D1901-SXXXX-XXI-X
2-7/8	1.0	TMP	OVAL	85	4.75	4.00	2.441	2.347	1.027	1.027	a.) 288X1-D2347-SXXXX-XXW-X b.) 288X1-D2347-SXXXX-XXI-X
2-7/8	1.5	TP	OVAL	103	5.50	4.59	2.441	2.347	1.6	1.5	a.) 288X2-D2347-SXXXX-XXW-X b.) 288X2-D2347-SXXXX-XXI-X
3-1/2	1.0	TMP	OVAL	85	5.31	4.12	2.992	2.867	1.027	1.027	a.) 350X1-D2867-SXXXX-XXW-X b.) 350X1-D2867-SXXXX-XXI-X
3-1/2	1.5	TP	OVAL	104	6.06	5.00	2.992	2.867	1.6	1.5	a.) 350X2-D2867-SXXXX-XXW-X b.) 350X2-D2867-SXXXX-XXI-X
4.0	1.0	TMP	OVAL	86	5.85	5.00	3.476	3.351	1.027	1.027	a.) 400X1-D3351-SXXXX-XXW-X b.) 400X1-D3351-SXXXX-XXI-X
4.0	1.5	TP	OVAL	107	6.63	5.55	3.476	3.351	1.6	1.5	a.) 400X2-D3351-SXXXX-XXW-X b.) 400X2-D3351-SXXXX-XXI-X
4-1/2	1.0	TMP	OVAL	86	6.45	5.50	3.958	3.833	1.027	1.027	a.) 450X1-D3833-SXXXX-XXW-X b.) 450X1-D3833-SXXXX-XXI-X
4-1/2	1.5	TP	OVAL	107	7.03	5.625	3.958	3.833	1.6	1.5	a.) 450X2-D3833-SXXXX-XXW-X b.) 450X2-D3833-SXXXX-XXI-X
5.0	1.5	TP	OVAL	116	7.94	6.80	4.408	4.283	1.6	1.5	a.) 500X2-D4283-SXXXX-XXW-X b.) 500X2-D4283-SXXXX-XXI-X
5-1/2	1.0	TMP	OVAL	87	7.94	6.80	4.778	4.653	1.6	1.5	a.) 550X1-D4653-SXXXX-XXW-X b.) 550X1-D4653-SXXXX-XXI-X
5-1/2	1.5	TP	OVAL	108	7.44	6.05	4.00	3.833	1.6	1.5	a.) 550X2-D3833-SXXXX-XXW-X b.) 550X2-D3833-SXXXX-XXI-X
5-1/2	1.5	TP	OVAL	108	7.94	6.80	4.778	4.653	1.6	1.5	a.) 550X2-D4653-SXXXX-XXW-X b.) 550X2-D4653-SXXXX-XXI-X
7.0	1.0	TMP	ROUND	90	8.25	8.25	6.184 **	6.059	1.027	1.027	a.) 700X1-D6059-SXXXX-XXW-X b.) 700X1-D6059-SXXXX-XXI-X
7.0	1.5	TP	OVAL	117	9.38	8.38	6.184 **	6.059	1.6	1.5	a.) 700X2-D6059-SXXXX-XXW-X b.) 700X2-D6059-SXXXX-XXI-X

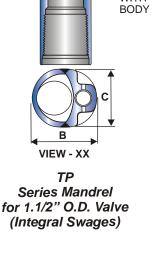
TMP and TP Series Side Pocket Mandrel:

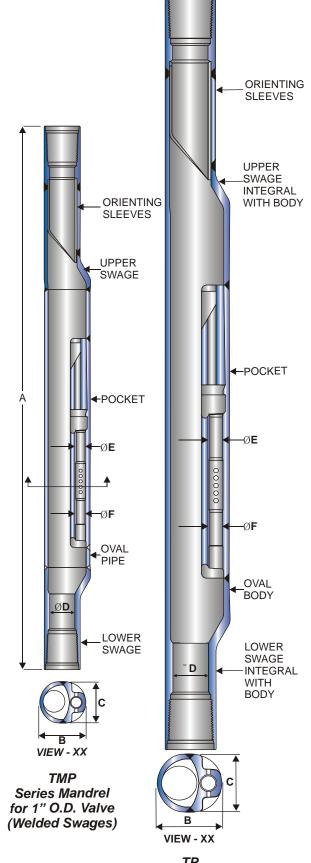
PARVEEN TMP and TP Series Side Pocket Mandrels are consisting of forged pocket with integral tool discriminator, oval pipe, swages and orienting sleeves. Its orienting sleeve allows precise and proper alignment during the insertion of positioning devices / tools into the side pocket. Forged tool discriminator guides the proper diameter side pocket devices/tools into the mandrel pocket and deflects larger tools into the tubing bore to prevent damage to the positioning devices/tools.

In Gas Lift applications, high pressure gas injected into the casing annulus flows through the ports of the pocket in the gas lift valve and into the tubing. The standard pocket is ported between the seal bores to communicate with the casing annulus and the gas is circulated down the annulus through the gas lift valve into the tubing. These mandrels are used for tubing flow applications.

Both TMP and TP series feature multiple porting variations for specific applications i.e. annulus flow, chamber lift, fluid injection waterflood installations.

TMP and TPC Series Side Pocket Mandrel :


These mandrels are used in annulus flow applications in which a snorkel functions as an exhaust port. Snorkel located at the bottom of the side pocket, extends downward into casing annulus. The holes in the mandrel side pocket directly communicate with the tubing. High pressure gas injected into the tubing flows thru the port between the packing bores into the pocket of the mandrel, then thru the ports into the gas lift valve, downward through the snorkel and then finally into the casing.


TMPE and TPE Series Side Pocket Mandrel :

These mandrels mainly used in chamber lift applications. It has no ports in the side pocket for communication with the tubing. Instead of that, an exhaust port is located at the bottom of the side pocket. This port is extended downward into the casing annulus through a 1/2" pipe connected to the top packer of a chamber lift installation. In gas lift application, high pressure gas is injected into the casing annulus flows through the ports in the side of the mandrel, then through the ports in the gas lift valve and finally downward to the exhaust port.

TMPS and TPS Series Side Pocket Mandrel:

These mandrels are used in single string, multi zone fluid injection water flood installations. The casing exhaust port located at the bottom of the side pocket is used to protect the casing from high velocity turbulence related with water flooding. In water flood operations, water injected into the tubing flows into the mandrel side pocket, thru the water flood flow regulator valve and downward through he exhaust port. A non retrievable check valve can be attached directly to the exhaust port to prevent back flow from the annulus when the water flood regulator valve is removed.

	PRESSURE RATING FOR SIDE POCKET MANDRELS										
Tubing	Valve	Mandrel	Weight	Volume			ssure (PSI)*				
Size	OD	Туре	Lbs - F*	(Cubic	Standard	d Services	Corrosive Services				
(Inch)	(Inch)		(Kg - F)	Ft.)	Internal	External	Internal	External			
2-3/8	1.0	TMP	75.0 (34)	0.47	8000	7000	6000	5500			
2-3/8	1.5	TP	130 (59)	0.88	7500	6500	6000	5000			
2-7/8	1.0	TMP	121.25 (55)	0.73	8000	7000	6000	5500			
2-7/8	1.5	TP	180.77 (82)	1.18	7500	6500	6000	5000			
3-1/2	1.0	TMP	150.00 (68)	0.84	8000	6500	6000	5000			
3-1/2	1.5	TP	209.4 (95)	1.43	8000	6500	7000	5500			
4.0	1.0	TMP	205.0 (92)	1.14	8000	6500	7000	5500			
4.0	1.5	TP	236.0 (107)	1.78	8000	6500	7000	5500			
4-1/2	1.0	TMP	216.0 (98)	1.38	7500	6000	6000	5000			
4-1/2	1.5	TP	242.5 (110)	1.92	7500	6000	6000	5000			
5.0	1.5	TP	310.8 (141)	2.84	8500	7000	6500	5500			
5-1/2	1.0	TMP	262.3 (119)	2.13	7500	6000	6000	5000			
5-1/2	1.5	TP	291.0 (132)	2.20	7500	6000	6000	5000			
5-1/2	1.5	TP	297.6 (135)	2.64	8500	7000	6500	5500			
7.0	1.0	TMP	405.6 (184)	2.8	7000	5500	5000	4500			
7.0	1.5	TP	452.0 (205)	4.17	7000	5500	5000	4500			

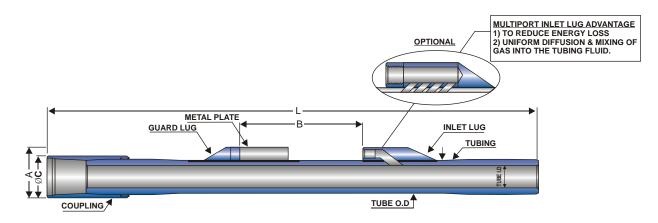
NOTES:

* Test Pressures given are for mandrels made of AISI-4130 materials heat treated for standard or corrosive environments. Test Pressures may be reduced due to end connection limitations.

** Weight and Length may vary depending upon end connection etc.

*** For 7" TMP & TP Series other drift sizes can also be provided upon request.

CONVENTIONAL MANDRELS


INTRODUCTION

PARVEEN manufactures both standard as well as high strength conventional mandrels. These are designed for single-string installations and generally used in injection pressure operated tubing flow applications.

Mandrels for gas lift valves have two-fold function - first, they provide a convenient fitting on which to install a gas lift valve as an integral part of a tubing string and second, these help pass the gas through the valves in the proper direction. All mandrels are constructed to perform these functions with maximum reliability. After the machining and welding operations are completed, all mandrels are pressure tested and checked for alignment and drift I.D. Internal, external or complete plastic coating is available for protection from corrosion or paraffin accumulation.

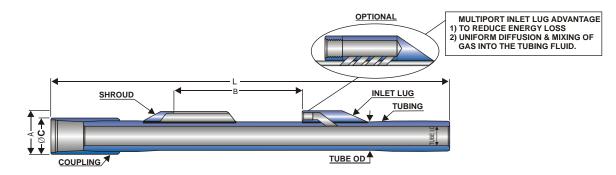
CONVENTIONAL MANDREL - SERIES 12 (Model : PCM-12)

Series 12 Mandrels are designed to receive any valve with a $\frac{1}{2}$ " NPT inlet lug connection, a maximum OD of 1-1/16", and a maximum length of 17.1/8". Many tubing sizes, thread types and grades are available. Only the more popular grades and sizes are listed below.

S	SPECIFICATION OF STANDARD CONVENTIONAL MANDREL SERIES 12 (Model : PCM-12)										
Nominal Tube Size (inch)	Type Thread	OD of Tube (inch)	Weight (PPF)	ID of Tube (inch)	A Max. (inch)	B (inch)	L (ft.)	Approx Weight (Lbs-f)	Coupling OD ¢C(inch)	Material Grade	
2-3/8	EUE, 8RD	2-3/8	4.7	1.995	3.920	17-1/8	4	24.5	3.063	4C0-0601-100-00	
2-3/8	EUE, 8RD	2-3/8	4.43	1.995	3.825	17-1/8	4	23.5	2.91	4C0-0601-100-01	
2-3/8	NUE, 10RD	2-3/8	4.6	1.995	3.840	17-1/8	4	23.8	2.875	4C0-0602-100-00	
2-7/8	EUE, 8RD	2-7/8	6.5	2.441	4.490	17-1/8	4	34.0	3.668	4C0-0701-100-00	
2-7/8	EUE, 8RD	2-7/8	6.0	2.441	4.330	17-1/8	4	32.0	3.460	4C0-0701-100-01	
2-7/8	NUE, 10RD	2-7/8	6.4	2.441	4.400	17-1/8	4	33.9	3.5	4C0-0702-100-00	
3-1/2	EUE, 8RD	3-1/2	9.3	2.992	5.125	17-1/8	4	42.0	4.5	4C0-0801-100-00	

ORDERING INFORMATION

- 1. Determine the type of mandrel required based on the casing and tubing sizes and the type gas lift valve being used to the application.
- 2. Specify tubing size, thread and grade required for the application.
- 3. Valve adapters and/or thread adapters are sometimes required. Please include these when applicable.



CONVENTIONAL MANDRELS

CONVENTIONAL MANDREL - SERIES 12 (MODEL : PCM-12S)

Series 12 Mandrels are designed to receive any valve with a ½" NPT inlet lug connection, a maximum OD of 1-1/16", and a maximum length of 17.1/8". Many tubing sizes, thread types and grades are available. Only the more popular grades and sizes are listed below. These Mandrels use shroud instead of Grand Lug & Metal Plate.

SP	SPECIFICATION OF STANDARD CONVENTIONAL MANDREL SERIES 12 (MODEL : PCM-12S)										
Nominal Tube Size (inch)	Type Thread	OD of Tube (inch)	Weight (PPF)	ID of Tube (inch)	A Max. (inch)	B (inch)	L (ft.)	Approx Weight (Lbs-f)	Coupling OD ¢C(inch)	Material Grade	
2-3/8	EUE, 8RD	2-3/8	5.45	1.995	3.920	17-1/8	4	27.5	3.063	4C0-1601-100-00	
2-3/8	EUE, 8RD	2-3/8	5.18	1.995	3.825	17-1/8	4	26.5	2.91	4C0-1601-100-01	
2-3/8	NUE, 10RD	2-3/8	5.35	1.995	3.840	17-1/8	4	26.8	2.875	4C0-1602-100-00	
2-7/8	EUE, 8RD	2-7/8	7.25	2.441	4.490	17-1/8	4	37.0	3.668	4C0-1701-100-00	
2-7/8	EUE, 8RD	2-7/8	6.75	2.441	4.330	17-1/8	4	35.0	3.460	4C0-1701-100-01	
2-7/8	NUE, 10RD	2-7/8	7.15	2.441	4.400	17-1/8	4	36.9	3.5	4C0-1702-100-00	
3-1/2	EUE, 8RD	3-1/2	10.05	2.992	5.125	17-1/8	4	45.0	4.5	4C0-1801-100-00	

CONVENTIONAL MANDRELS - SERIES 15 (MODEL : PCM-15)

Series 15 Conventional MANDRELS are designed to receive any valve with a ½" NPT inlet lug connection, a maximum OD of 1- ½" and a maximum length of 29". Many tubing sizes, thread types, and grades are available. Only the more popular grades and sizes are listed below.

SP	ECIFICATIO	NS OF	STANDA	RD CON	VENTION	IAL MAN	DREL	SERIES	15 (MODE	EL : PCM-15)
Nominal Tube Size (inch)	Type Thread	OD of Tube (inch)	Weight (PPF)	ID of Tube (inch)	A Max. (inch)	B (inch)	L (ft.)	Approx Weight (Lbs-f)	Coupling OD ¢C(inch)	Assembly Part no. Material Grade API-N-80
2-3/8	EUE, 8RD	2-3/8	4.7	1.995	4.577	29	4	27	3.063	4C2-3601-100-00
2-3/8	EUE, 8RD	2-3/8	4.43	1.995	4.375	29	4	26	2.91	4C2-3601-100-01
2-3/8	NUE, 10RD	2-3/8	4.60	1.995	4.484	29	4	26.4	2.875	4C2-3602-100-00
2-7/8	EUE, 8RD	2-7/8	6.50	2.441	5.130	29	4	36.5	3.668	4C2-3701-100-00
2-7/8	NUE, 10RD	2-7/8	6.40	2.441	5.046	29	4	36.3	3.50	4C2-3702-100-00
3-1/2	EUE, 8RD	3-1/2	9.30	2.992	5.859	29	4	44.5	4.50	4C2-3801-100-00
3-1/2	NUE, 10RD	3-1/2	8.98	2.992	5.734	29	4	43.6	4.25	4C2-3802-100-00

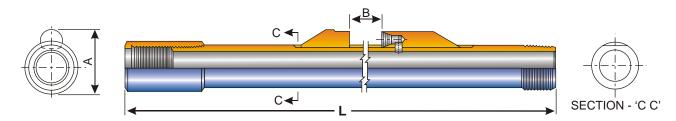
NOTE:

Using 2-3/8" EUE,8RD tubing inside 4-1/2" casing. The mandrel contains a shroud to provide valve protection.

HIGH STRENGTH CONVENTIONAL MANDRELS

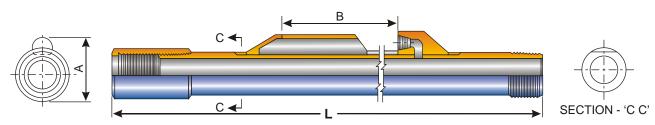
PARVEEN has been manufacturing high strength conventional mandrels. Their round exterior design makes them easy to rotate in difficult situations & perform easier washover operations. These mandrels exceed N-80 tubing strength.

PARVEEN'S high strength mandrels have the benefit of:


- 1. Can with stand pull load of over 60 Metric Tones.
- 2. Tested hydraulically to 8000 PSI.
- 3. Tapered lugs to provide easy running.
- 4. Bore size to match with tubing specifications.

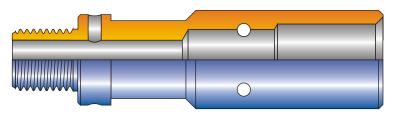
These mandrels come in 2 series.

Series 500: These are designed to receive any valve with $\frac{1}{2}$ " NPT inlet lug connection and a maximum OD of 1-1/16". Series 502: These are designed to receive any valve with $\frac{1}{2}$ " NPT & a maximum OD of 1-1/2".

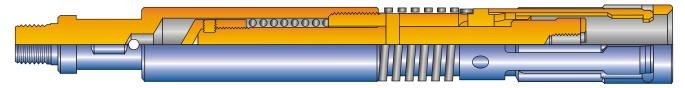

All above series are available in many tubing size, thread size & grades, only the more popular sizes are listed below.

HIGH STRENGTH CONVENTIONAL MANDREL - SERIES 500 (Model: PHSCM-500)

Nominal Tube Size (inch)	Type Thread	OD of Tube (inch)	ID of Tube (inch)	A Max. (inch)	B (inch)	L (ft.)	Approx Weight (lbsf)	Coupling OD (inch)	Assembly Part no. Material Grade API N-80
2-3/8	EUE, 8RD	2.594	1.995	3.920	17-1/8	4	33.0	3.063	500-0601-100-00
2-3/8	EUE, 8RD	2.594	1.995	3.825	17-1/8	4	32.0	2.91	500-0601-100-01
2-7/8	EUE, 8RD	3.094	2.441	4.490	17-1/8	4	40.5	3.668	500-0701-100-00
2-7/8	EUE, 8RD	3.094	2.441	4.330	17-1/8	4	38.5	3.460	500-0701-100-01


HIGH STRENGTH CONVENTIONAL MANDREL - SERIES 502 (Model: PHSCM-502)

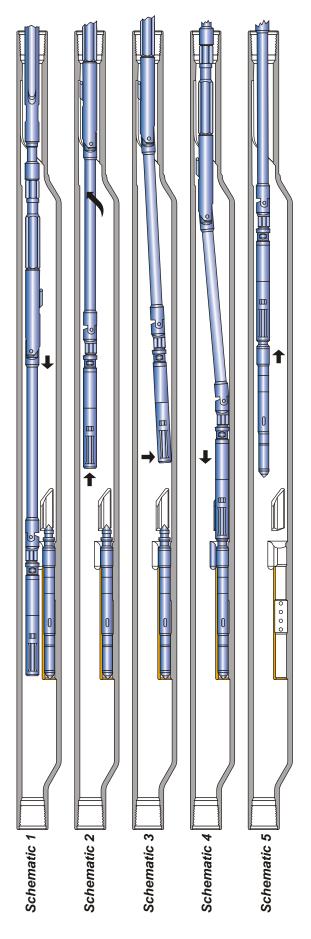
Nominal Tube Size (inch)		OD of Tube (inch)	ID of Tube (inch)	A Max. (inch)	B (inch)	L (ft.)	Approx Weight (Lbsf)	Coupling OD (inch)	Assembly Part no Material Grade API - N80
2-3/8	EUE, 8RD	2.594	1.995	4.577	29	4	35.5	3.063	502-3601-100-00
2-3/8	EUE, 8RD	2.594	1.995	4.375	29	4	34.5	2.91	502-3601-100-03
2-7/8	EUE, 8RD	3.094	2.441	5.130	29	4	43.0	3.668	502-3701-100-00


RUNNING, PULLING TOOLS

Running Tools

PARVEEN Manufactures Wireline Running Tools used to install latches and valves, MR, RTG and TER running tools are used to install appropriate latches with valves in side pocket mandrels.

	ENGINEERING DATA FOR RUNNING TOOLS											
TYPE	ASSEMBLY MAX OD. FISHING NECK O.D. PIN USED TO RUN											
MR	10336	1.370	1.370	15/16-10	BK-2, M, WFM LATCH							
RTG	16927	1.430	1.188	15/16-10	RK, TG LATCH							
TER	11730 1.750 1.372 15/16-10 T-2, RM LATCH											


Pulling Tools

MP, PTG, TRP Pulling tools are designed to retrieve 1" and 1-1/2" OD Gas lift valves with latches. It features the collect type dogs with large shear area and it will withstand repeated impacts with long life on the dogs. Jar down will cause the dogs to release from the pulling head of the latch.

	ENGINEERING DATA FOR PULLING TOOLS										
TYPEASSEMBLY NUMBERMAX OD. (INCH)FISHING NECK O.D. (INCH)PIN THREAD											
MR	11361	1.291	1.188	15/16-10 TPI							
PTG	17048	1.625	1.188	15/16-10 TPI							
TRP	TRP 11390 1.859 1.375 15/16-10 TPI										

HD TP POSITIONING TOOLS

Wireline Positioning Tools are designed to provide selective location of the mandrel when there are two or more mandrels installed in a well. The tool orients in the proper position, and offsets the valve (or pulling tool) into position over the pocket for setting or retrieving.

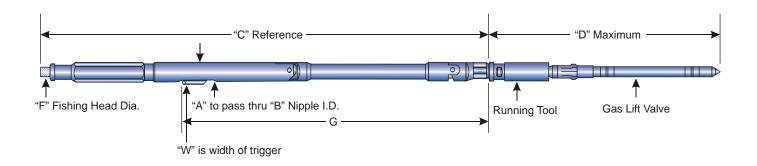
BENEFITS OF DESIGN PRINCIPLE

- Spring-loaded trigger key is guided to a stop in the mandrel's positioning sleeve, which provides positive weight increase to the operator.
- There is only one brass shear pin in the assembly which is replaced easily after each wire line run. The pin can be replaced with the tool projecting from the lubricator.
- Large bypass flow area, both internal and external, reduces swabbing effect during setting or pulling operations.
- The tool is locked in the in-line position, which prevents it from accidentally kicking over and dragging on the tubing walls during insertion and withdrawal. The tool is locked in the offset position for positive pocket locating when inserting or retrieving the valve.

OPERATING PRINCIPLE

<u>Schematic 1 -</u> The tool is run below the mandrel. Since the tool is locked in a rigid position, it is designed not to kick over accidentally.

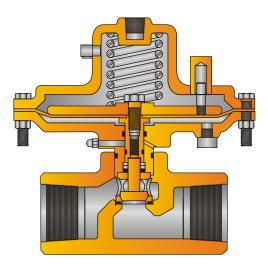
<u>Schematic 2 -</u> The tool is raised until its key engages the sleeve in the mandrel. Continued upward movement rotates the tool until its key enters a slot. When the key reaches the top of the slot, the operator is notified by a weight increase displayed on the weight indicator. The tool is now properly oriented.


<u>Schematic 3 -</u> The pivot arm is designed to swing out and lock in position due to additional pull. This action locates the valve or pulling tool above the pocket or latch on the gas lift valve.

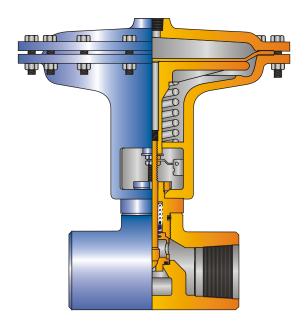
<u>Schematic 4</u> - The mandrel is designed to guide the valve or pulling tool to accurately land the valve or engage the latch on the valve.

<u>Schematic 5</u> - A straight, upward pull shears a pin when the key reaches the top of the slot. This action allows the trigger to guide freely out of the slot and through the tubing. When the pivot arm reaches the small upper section of the mandrel, it is designed to snapback and lock into its vertical running position, reducing drag on the tool and valve as it is removed.

HD-TP/HD-TMP POSITIONING TOOLS



The HD Tools have identical running & pulling procedure as the standard tools.

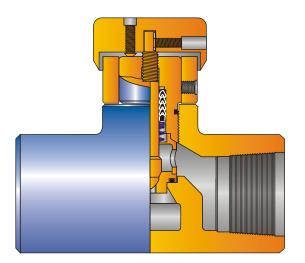

	ENGINEERING DATA FOR HD-TP/HD-TMP POSITIONING TOOLS												
TOOLS	Α	В	G	W	С	F	D	PART NUMBER					
2.3/8 HD TMP	1.855	1.875	25.73	.55	38.00	1.375	20.50	375-1000-110-00					
2.7/8 HD TMP	2.280	2.313	25.88	.55	38.00	1.375	20.50	375-1000-110-00					
3.1/2 HD TMP	2.730	2.750	25.57	.55	39.25	1.375	20.50	375-2000-110-00					
4.0 HD TMP	3.292	3.313	25.79	.55	40.44	1.750	20.50	375-3000-110-00					
4.1/2 HD TMP	3.725	3.750	26.82	.55	40.44	1.750	20.50	375-4000-110-00					
2.3/8 HD TP	1.855	1.875	24.22	.55	48.10	1.375	33.00	375-0100-210-00					
2.7/8 HD TP	2.280	2.313	24.47	.55	48.57	1.375	33.00	375-1000-210-00					
3.1/2 HD TP	2.730	2.750	24.27	.55	46.00	1.375	33.00	375-2000-210-00					
4.0 HD TP	3.290	3.310	24.22	.55	38.96	1.750	33.00	375-3000-210-00					
4.1/2 HD TP	3.725	3.750	25.80	.55	41.44	2.312	33.00	375-4000-210-00					
5.0 HD TP	4.250	4.280	25.80	.55	47.00	2.312	33.00	375-5000-210-00					
5.1/2 HD TP	4.480	4.500	27.70	.55	49.00	2.312	33.00	375-6000-210-00					

SURFACE FLOW CONTROLS MOTOR VALVES

MOTOR VALVE - MV 40

MOTOR VALVE - MV 60

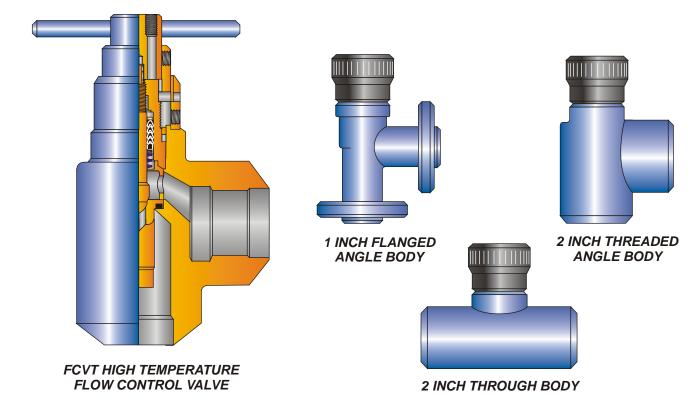
PARVEEN offers two basic motor valve designs, the MV-40 and the MV-60. Both models are pneumatically operated valves for use in time cycle controllers, dump valves for oil and gas separators, pressure vessels, and storage tanks; and various wellhead and process control applications.


The MV-40 is an economical motor valve designed for applications where the maximum working pressure does not exceed 3,000 pounds per square inch. The MV-60 is specified for service up to 4,000 pounds per square inch working pressure. Both models are available in 1 in. or 2 in. body size, angle or through configuration with welded, flanged, or threaded ends.

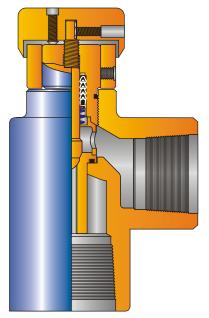
The standard trim material is stainless steel but optional hard chrome or tungsten carbide may be ordered for more severe service. Four sizes of trim are available -1/4 in., 1/2 in., 3/4 in, or 1 in. Both MV-60 and the MV-40 may be operated as either pressure open or pressure close. The valve, seat and packing may be replaced without removing the body from the line or without disassembling the diaphragm section.

	ENGINEERING DATA FOR MV SERIES MOTOR VALVES													
Туре	Assembly Number	Maximum Working Pressure	Connecting Thread (in - TPI) Inlet Outlet		Trim Size (inches)	Area (Sq. inch)	Diaphragm Maximum Woking Pressure (psi)							
MV-60	610	4,000	2-11.1/2 LP	2-11.1/2 LP	1/4-1	72	60							
MV-40	650	3,000	2-11.1/2 LP	2-11.1/2 LP	1/4-1	54	60							

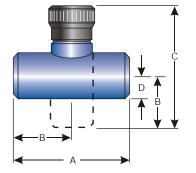
SURFACE FLOW CONTROLS FCV SERIES FLOW CONTROL VALVES

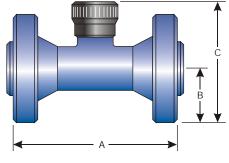

FCV FLOW CONTROL VALVE

OPTIONAL REVERSE FLOW CHECK SEAT **PARVEEN FCV Series Flow Control Valves** are manually adjusted valves designed to provide repeatable settings. Available in 1 and 2-inch body sizes and a wide range of bodies and trim configurations, these valves feature an adjustable handwheel calibrated in sixty-fourths of an inch, and Teflon packing for positive seal and minimum maintenance. Threaded connections are rated for 5000 psi, socket weld at 3600 psi and butt weld at 5000 psi. They are designed to operate in any position and to resist the effects of vibration on the selected setting. Their construction allows easy inspection or replacement of internals without removing the valve from the line. Type 316, 410 or duplex - stainless steel bodies, and stainless steel handles and indicator rings are available for corrosive service.

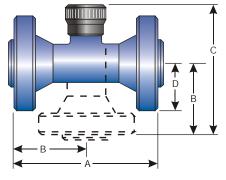

Valve trims and seats are available in 1/8, 1/4, 1/2 or 3/4-inch sizes in stainless steel, hard chrome or tungsten carbide materials.

PARVEEN FCVT High Temperature Flow Control Valves are designed for steam injection or other high temperature gas or liquid service. Rated at 3500 psi working pressure at 700°F, these 2 inch angle body valves feature 1/4, 1/2 or 3/4 inch stainless steel, hard chrome or tungsten carbide long throat trim and high temperature packing. The high temperature configuration is also available in an adjustable choke valve model (ACVT -5). This valve series is also available with flanged end connections.

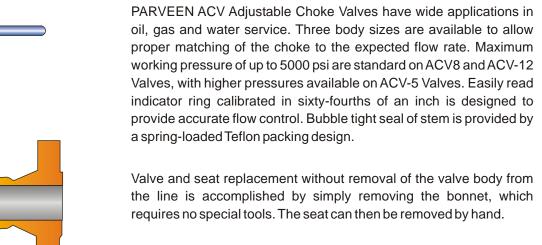

SURFACE FLOW CONTROLS WFC SERIES WATERFLOOD CONTROL VALVES


WFC WATERFLOOD VALVE

PARVEEN WFC Waterflood Control Valves are designed specifically for waterflood applications. They are available in either 1 or 2-inch angle body configurations with threaded, butt weld or flanged connections. This design contains a long throat seat to control the turbulence and erosion associated with liquid service. Standard features of this valve include the adjustable hand wheel calibrated in sixty-fourths of an inch and Teflon packing for positive seal and minimum maintenance. An optional feature is the availability of a secondary positive choke bean for high-pressure differentials. This feature is designed for a 60% and 40% pressure drop across the primary and secondary controls respectively.


Stainless steel, hard chrome or tungsten carbide trims are available in 1/8, 1/4, 1/2 and 3/4 inch sizes. The long throat seat, stainless steel handle and indicator ring are standard.

FCV - WFC



	DIMENSIONAL DATA FOR FCV, WFC AND FCV-2X														
End						Dim	ension	s (Inch	es)				Approximate		
Connection		Α			В			С			D	Weight in Lbs.			
Type / Size	1	2	2X	1	2	2X	1	2	2X	1	2	2X	1	2	2X
Screwed	6.30	7.80		2.95	3.90		7.90	8.81		1.06	1.72		10	20	
Butt Weld	5.00	6.75		2.50	3.37		7.45	8.65		1.06	1.72		10	20	
Socket Weld	5.12	6.75		2.56	3.37		7.51	8.65		1.06	1.72		10	20	
Series 150 RF		9.00			4.50			9.78			3.00			32	
Series 300 RF		10.00		5.00				10.28			3.25			32	
Series 600 RF	8.50	11.50	11.50	4.25	5.75	5.75	9.20	11.03	9.65	2.44	3.25	3.25	18	40	34
Series 600 RJ	8.50	11.62	11.62	4.25	5.81	5.81	9.20	11.09	9.71	2.44	3.25	3.25	18	40	34
Series 1500 RF	10.00	14.50		5.00	7.25		9.95	12.53		2.94	4.25		30	70	
Series 1500 RJ	10.00	14.62		5.00	7.31		9.95	12.59		2.94	4.25		30	70	
Series 900 RF	10.00	14.50	14.50	5.00	7.25	7.25	9.95	12.53	11.25	2.94	4.25	4.25	30	70	
Series 900 RJ	10.00	14.62	14.62	5.00	7.31	7.31	9.95	12.59	11.21	2.94	4.25	4.25	30	70	90
API 3000		14.62			7.31			12.59			4.25			70	
API 5000		14.62			7.31			12.59			4.25			70	

SURFACE FLOW CONTROLS ACV SERIES ADJUSTABLE CHOKE VALVES

All valves in this series may be equipped with either an electric or pneumatic actuator to meet installation requirements.

ACV-12 Series Valves feature a 3-inch maximum port and a semi balanced stem design to reduce the torque required to open the valve when high pressure differentials exist.

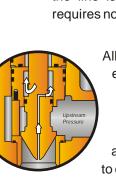
SEMI-BALANCED STEM FEATURE

ACV-8 Series Valves feature a 2-inch maximum port and offer an optional positive choke seat for high differential pressures.

ACV-5 Series Valves feature an 1 ¼ -inch maximum port size.

All valves in this series are available with API or ANSI flanges or with socket weld, butt weld or threaded connections.

ACV-12 DIMENSIONAL DATA Available with 1 1/2, 2 or 3-inch trim.


- R

ACV -12 ADJUSTABLE

CHOKE VALVE

	Maximum		4-Inch			6-Inch	
Body Style	Working Pressure (psi)	Inches A&B		Approx. Wt. in Lbs.		Inches C	Approx. Wt. in Lbs.
Series 600 RF	1480	8.50	26.69	299	11.00	29.19	371
Series 600 RJ	1480	8.56	26.75	299	11.06	29.25	371
Series 900 RF	2220	9.00	27.19	327	12.00	30.19	445
Series 900 RJ	2220	9.06	27.25	327	12.06	30.25	445
Series 1500 RF	3701	10.75	28.94	363	13.87	32.06	553
Series 1500 RJ	3705	10.81	29.00	363	14.00	32.19	553
Series 2500 RF	5000	13.25	31.44	517	18.00	36.19	981
Series 2500 RJ	5000	13.44	31.63	517	16.25	34.44	981
API 2000	2000	8.56	26.75	299	11.06	29.25	371
API 3000	3000	9.06	27.25	327	11.25	29.44	445
API 5000	5000	10.81	29.00	363	12.63	30.82	553

C _v Values Flow Coefficient at Maximum Settings Model & Trim Size C _v Maximum									
ACV-5									
3/4 - inch 1 - inch 1 1/4 - inch	19.3 28.0 35.0								
ACV-8									
1 - inch 1 1/2 - inch 2 - inch	30.8 61.5 85.8								
ACV-12									
2 - inch 3 - inch	124 285								

ACV-8 DIMENSIONAL DATA

Body

Style

Threaded

Socket Weld

Butt Weld 160

Series 600 RF

Series 600 RJ

Series 900 RF

Series 900 RJ

Series 1500 RF

Series 1500 RJ

Series 2500 RF

Series 2500 RJ

API 2000

API 3000

API 5000

Available with 1, 1 1/2 or 2 - inch trim

Maximum

Working

Pressure (psi)

3000

3600

5000

1480

1480

2220

2220

3705

3705

5000

5000

2000

3000

5000

2 1/2-Inch

С

15.19

15.19

15.19

16.69

16.75

18.44

18.50

18.44

18.50

20.19

20.32

16.75

18.50

18.50

Approx.

Wt. in Lbs.

60

60

60

88

88

132

132

132

132

164

164

88

132

132

Inches Inches

A&B

5.00

5.00

5.00

6.5

6.56

8.25

8.31

8.25

8.31

10.00

10.13

6.56

8.31

8.31

SURFACE FLOW CONTROLS ACV SERIES ADJUSTABLE CHOKE VALVES

3-Inch

Inches

С

15.19

15.19

15.19

17.19

17.26

17.69

17.76

19.44

19.51

21.56

21.69

17.25

17.76

19.50

Inches

A&B

5.00

5.00

5.00

7.00

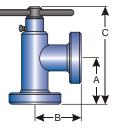
7.07

7.50

7.57

9.25

9.32


11.37

11.50

7.06

7.57

9.31

Wt. in Lbs.

70

70

70

106

106

128

128

166

166

258

258

106

128

166

Approx. Inches Inches

A&B

5.44

5.44

5.44

8.50

8.56

9.00

9.06

10.36

10.46

13.25

13.40

8.56

9.06

10.81

4-Inch

С

15.63

15.63

15.63

18.69

18.75

19.19

19.25

20.55

21.65

23.44

23.59

18.75

19.25

21.00

Approx.

80

80

80

154

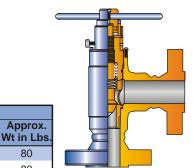
154

182

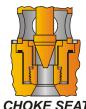
182

218

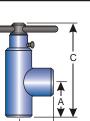
218


372

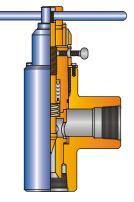
372


154

182


218

ACV-8 ADJUSTABLE CHOKE VALVE



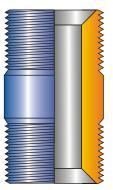
ACV-5 DIMENSIONAL DATA Available with 3/4, 1 or 1 1/4 - inch trim

Body Style	Maximum Working Pressure (psi)			2 -Inch			-1/2 Inc	h	3-Inch		
	Inche 2 2 1/2		Inches A&B	Inches C	Approx. Wt. in Lbs.		Inches C	Approx. Wt. in Lbs.		Inches C	Approx. Wt in Lbs.
Threaded	5000	3000	5.00	13.44	35	5.00	13.44	40	5.00	13.44	45
Socket Weld	3600)	5.00	13.44	35	5.00	13.44	40	5.00	13.44	45
Butt Weld 160	6000)	4.50	12.94	35	5.00	13.44	40	5.00	13.44	45
Butt Weld XXH	1000	0	4.50	12.94	35	5.00	13.44	40	5.00	13.44	45
Series 600 RF	1480)	6.38	14.82	55	6.50	14.94	60	7.00	15.44	65
Series 600 RJ	1480)	6.44	14.88	55	6.56	15.00	60	7.07	15.51	65
Series 900 RF	2220)	7.25	15.68	83	8.25	16.69	88	7.50	15.74	93
Series 900 RJ	2220)	7.31	15.75	83	8.31	16.75	88	7.57	16.01	93
Series 1500 RF	370	5	7.25	15.69	83	8.25	16.69	88	9.25	17.69	93
Series 1500 RJ	370	5	7.31	15.75	83	8.31	16.75	88	9.32	17.76	93
Series 2500 RF	5000)	8.75	17.19	119	10.00	18.44	144	11.31	19.75	233
Series 2500 RJ	5000)	8.94	17.38	119	10.13	18.57	144	11.50	19.94	233
API 2000	2000)	6.44	14.88	55	6.56	15.00	60	7.06	15.50	65
API 3000	3000)	7.31	15.75	83	8.31	16.75	88	7.57	16.01	93
API 5000	5000)	7.31	15.75	83	8.31	16.75	88	9.31	17.75	93
API 10000	1000	0	6.92	15.36	119	7.83	16.27	144	8.86	17.30	233

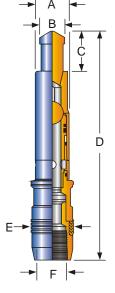
ACV-5 ADJUSTABLE CHOKE VALVE

STANDING VALVES AND SEATING NIPPLES

PARVEEN Standing valves and companion seating nipples are normally used in intermitting or chamber lift wells in the bottom of the tubing or chamber. The seating nipple is an integral part of the tubing string. The standing valve seats on the NO-GO of the seating nipple and seals in the honed bore of the nipple to prevent the fluid from flowing back into well bore when high pressure gas is injected under a slug of fluid. PARVEEN manufactures E-3 type of standing valve, in all popular sizes. A complete line of seating nipples are available to accept the standing valves.


DESCRIPTION & SPECIAL FEATURES OF STANDING VALVE

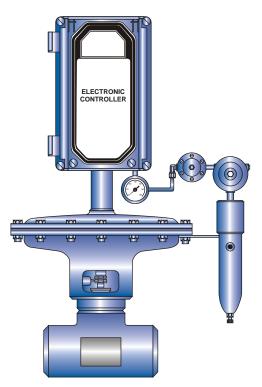
The E-3 Equalizing Standing Valve has a standard fishing neck and may be equalized and retrieved by wireline. The equalizing feature allows the operator to open ports below the valve and seat without lifting the hydrostatic head. This feature in many cases eliminates the need for an operator to pull a wet string of tubing. This valve may also be used as test plug for testing tubing for pressure leaks above the valve. Carbide balls are available for severe service in sandy wells.


SEATING NIPPLES

The E Seating Nipples are precision nipples that contain a honed bore to accept and seal the standing valve. They are offered in a wide range of sizes compatible with the tubing string and a large selection of bores for different sizes standing valves.

ENG	INEER	ING DATA F	OR TYPE	E SEAT	ING NIP	PLES
Size (Inch)	Size (inch)	Threads	Length (W/O Co	Wt/Lbs. oupling)	Bore (Inch)	Part no.
2.3/8	2	10 RD NUE	7.1/2	5.1/2	1.781	6972
2.3/8	2	8 RD EUE	7.1/2	5.1/2	1.781	6823
2.3/8	2	10 RD NUE	7.1/2	5.1/4	1.813	4901
2.3/8	2	8 RD EUE	7.1/2	5.1/4	1.813	4902
2.3/8	2	10 RD NUE	7.1/2	7.1/2	1.375	4941
2.3/8	2	8 RD EUE	7.1/2	7.1/2	1.375	4942
2.3/8	2	10 RD NUE	7.1/2	10.1/2	1.188	5174
2.3/8	2	8 RD EUE	7.1/2	10.1/2	1.188	5175
2.7/8	2.1/2	10 RD NUE	7.1/2	7	2.250	4903
2.7/8	2.1/2	8 RD EUE	7.1/2	7	2.250	4904
2.7/8	2.1/2	8 RD EUE	7.1/2	9.1/2	1.813	4906
2.7/8	2.1/2	10 RD NUE	7.1/2	9.1/2	1.813	4907
2.7/8	2.1/2	8 RD EUE	7.1/2	10.1/2	1.188	7858
2.7/8	2.1/2	8RD EUE	7.1/2	10	1.375	8773
2.7/8	2.1/2	8 RD EUE	7.1/2	9.1/2	1.438	8774
3.1/2	3	8 RD EUE	7.1/2	17.1/2	1.781	8824
3.1/2	3	8 RD EUE	7.1/2	14.1/2	2.250	8825
3.1/2	3	8 RD EUE	7.1/2	10.1/2	2.750	8826
3.1/2	3	8 RD EUE	7.1/2	19.1/2	1.375	8769

SEATING NIPPLES TYPE E



TYPE E-3 STANDING VALVE

	ENGINEERING DATA FOR TYPE E-3 STANDING VALVES													
			Di	mensior	ns (inche	es)								
Size (Nom.) (Inch)	WT/ Lbs.	Max. O.D.	Fishing Head Dia.	Neck	Overall Length	Packing Size (inch)		Thread	Part no.	Remark				
_	_	Α	В	С	D	E	F							
2	5.3/4	1.860	1.3/8	3.3/16	14.3/4	1.25/32	1.00	1 NPT	300-3240-000-01	SS BALL				
2	5.3/4	1.860	1.3/8	3.3/16	14.3/4	1.13/16	1.00	1 NPT	300-3250-000-01	SS BALL				
2 1/2	7.1/4	2.298	1.3/8	3.3/16	14.3/4	2.1/4	1.00	1 NPT	300-4260-000-01	SS BALL				
2 1/2	7.1/4	2.298	1.3/8	3.3/16	14.3/4	2.1/4	1.00	1 NPT	300-4261-000-01	TC BALL				

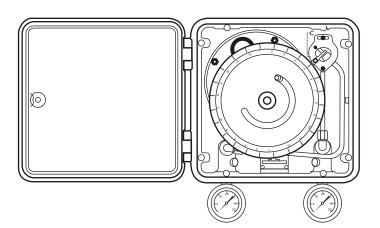
TIME CYCLE CONTROLLERS WITH ACCESSORIES TIME CYCLE ELECTRONIC CONTROLLERS

ELECTRONIC CONTROLLER AND MV-60 MOTOR VALVE

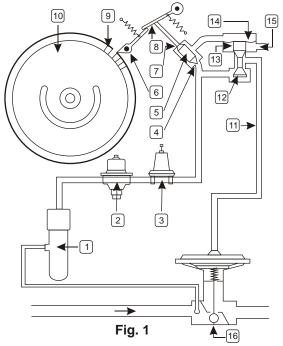
2 RBF TWO STAGE REGULATOR AND FILTER DRIP

Mounted directly to the Motor Valve, the Electronic Times Cycle Controller with the Two Stage Regulator and Filter Drip is a compact assembly designed to provide the operator with a reliable method of obtaining optimum control of a plunger lift installation without frequent visual inspection and adjustment of cycle times. The Electronic Time Cycle controller is, having microprocessor based timer that can be programmed to display name, date or whatever you like. The controller maintain On-Time, OFF-Time & Delay Time.

Each timer is easily set by the operator using the dedicated keys & the display on the front panel. Timer timings can be in hours & minutes or as required so as to achieve maximum accuracy for any operating condition.


The electronic controller features a rugged, watertight enclosure with a clear, see-through front cover that allows the operator to monitor the current cycle being timed without exposing the interior to ambient atmospheric conditions. In addition, the internal electronics are conformably coated for protection against moisture laden air or corrosive gases. The coil in the solenoid valve and current limiting components are totally encapsulated to prevent the possibility of electric arcing in the presence of an explosive atmosphere.

2RBF Two Stage Regulator and Filter Drip is composed of two pressure regulators and a filter-drip pot. The primary high-pressure regulator input up to 6000-psi supply gas and provides a 250-psi inlet supply to the secondary low-pressure regulator. The drip pot contains a stack of felt filters, which in conjunction with the sintered metal filter in the high-pressure regulator, provide a dry, clean (particulates less than 4 microns) operating supply to the pilot. The drip pot body features an extension for attachment to the motor valve, which permits a compact, unified installation.


Switch Gauges are conventional pressure gauges with adjustable high and low set points for controlling motor valve operation in response to well pressure. In operation, the indicator moves between the set point contact arms, and when the indicator touches one of the arms, an electric circuit is completed that generates a signal to an electronic timer, which controls the operation of a motor valve. These contact closure signals are used by the timer to override the programmed time cycles and typically represent high and low tubing and casing pressure.

4501 (MECHANICAL) TIME CYCLE CONTROLLERS

A time cycle Controller is recommended for any application where it is desired to automatically open and close a valve in accordance with a predetermined time schedule. It is normally used as a time cycle controller on the gas injection line of an intermitting installation or as a controller on the tubing for "stop clocking" service.

The T.C.C. consist of a clock with cast aluminum wheel holding timing clips and two 3 way valves. One of the 3 way valves is operated by a trigger while the other is activated by a composition diaphragm. Operating medium is taken from the up stream gas line or from the well casing and differed through filter (1) The Pressure is then reduced by the high pressure regulator (2) to about 75 PSI and further reduced to 20 PSI by the low pressure regulator (3)

Assume that timing clip (9) is moved out of the path of the trigger, as shown in Figure 1. When the point of the trigger (6) falls into the slot left by the displaced clip, the other end of the trigger exerts a force on the leaf spring (8) This in turn allows the primary 3-way valve (5) to open the supply port (4) and close the exhaust port (7) The supply gas then flows through the primary 3-way valve, loading the diaphragm (14) of the secondary 3-way valve. The force exerted on this diaphragm closes the exhaust valve (13) and opens the supply valve (12) to load the diaphragm of the motor valve (16).

As the timing wheel turns counterclockwise, the timing clips bump the trigger (6) forcing the trigger to reliever it pressure on leaf spring (8). This allows the 3-way valve (5) to close supply port (4) and open exhaust port (7) bleeding pressure off chamber above diaphragm (14) The operating medium then forces supply valve (12) to close, opening exhaust valve (13). Pressure in the main diaphragm will then bleed out exhaust port (15) and valve (16) will close.

ASSEMBLIES

UNIT NO.	
 5931 E - 4501 Time Cycle Control Pilot with 24-Hour Rotation 7-Day 5937 E - 4501 Time Cycle Control Pilot with Gas Proof 24-Hour Rotation, 7-Day Wind Clock (5932) 5938 E - 4501 Time Cycle Control Pilot with 2-Hour Rotation, 24 Hour wind Clock (5933) 5939 E - 4501 Time Cycle Control Pilot with Gas proof 2-Hour Rotation, 24-Hour Wind Clock (5933) 5940 E - 4501 Time Cycle Control Pilot with 2-Hour Rotation 7-Day's wind Clock (5935) 5942 E - 4501 Time Cycle Control Pilot with 6-Hour Rotation 7-Day's Wind Clock (5936) 	
8321 E - 4501 Time Cycle Control Pilot with Battery Powered Clock (Specify 12 or 24 Hour Rotation) 8320 E - Battery Powered Clock for Time Cycle Control Pilot (Specify 12 or 24 Hour Rotation)	
* Other rotation & Shaft Style Upon Request	

API TUBING TABLE

Gas Lift Equipment

Tubin	a Sizo	Nom	inal					Threaded	I Coupling				loint	Yield	Can	acity
Tubing	y Size	Wei						(Coupling Outside Dia	I.				ngth		ble
Nom in.	OD in.	T & C Non- Upset Lb/Ft	T & C Upset Lb/Ft	Grade	Wall Thick- ness in.	Inside Dia in.	Drift Dia. in.	Non Upset in.	Upset Reg. in.	Upset Spec. in.	Col- lapse Resis- tance psi	Internal Yield Pres- sure psi	T & C Non- Upset Lb.	T & C Upset Lb.	Barreis Per Lin. Ft.	Lin. Ft. Per Barrel
3/4	1.050 1.050 1.050 1.050	1.14 1.14 1.14 1.14 1.14	1.20 1.20 1.20 1.20	H-40 J-55 C-75 N-80	.113 .113 .113 .113 .113	.824 .824 .824 .824 .824	.730 .730 .730 .730 .730	1.313 1.313 1.313 1.313 1.313	1.660 1.660 1.660 1.660		7,200 9,370 12,250 12,970	7,530 10,360 14,120 15,070	6,360 8,740 11,920 12,710	13,300 18,290 24,940 26,610	.0007 .0007 .0007 .0007	1516.13 1516.13 1516.13 1516.13
1	1.315 1.315 1.315 1.315 1.315	1.70 1.70 1.70 1.70	1.80 1.80 1.80 1.80	H-40 J-55 C-75 N-80	.113 .113 .113 .113 .113	1.049 1.049 1.049 1.049	.955 .955 .955 .955	1.660 1.660 1.660 1.660	1.900 1.900 1.900 1.900		6,820 8,860 11,590 12,270	7,080 9,730 13,270 14,160	10,960 15,060 20,540 21,910	19,760 27,160 37,040 39,510	.0011 .0011 .0011 .0011	935.49 935.49 935.49 935.49
1 1/4	1.660 1.660 1.660 1.660 1.660 1.660	2.30 2.30 2.30 2.30	2.40 2.40 2.40 2.40	H-40 H-40 J-55 J-55 C-75 N-80	.125 .140 .125 .140 .140 .140	1.410 1.380 1.410 1.380 1.380 1.380	1.286 1.286 1.286 1.286	2.054 2.054 2.054 2.054	2.200 2.200 2.200 2.200		5,220 5,790 6,790 7,530 9,840 10,420	5,270 5,900 7,250 8,120 11,070 11,810	15,530 21,360 29,120 31,060	26,740 36,770 50,140 53,480	.0019 .0018 .0019 .0018 .0018 .0018	517.79 540.55 517.79 540.55 540.55 540.55
1 1/2	1.900 1.900 1.900 1.900 1.900 1.900	2.75 2.75 2.75 2.75 2.75	2.90 2.90 2.90 2.90	H-40 H-40 J-55 J-55 C-75 N-80	.125 .145 .125 .145 .145 .145 .145	1.650 1.610 1.650 1.610 1.610 1.610	1.516 1.516 1.516 1.516	2.200 2.200 2.200 2.200	2.500 2.500 2.500 2.500		4,450 5,290 5,790 6,870 8,990 9,520	4,610 5,340 6,330 7,350 10,020 10,680	19,090 26,250 35,800 38,180	31,980 43,970 59,960 63,960	.0026 .0025 .0026 .0025 .0025 .0025	378.11 397.14 378.11 397.14 397.14 397.14
2 1/16	2.063 2.063 2.063 2.063			H-40 J-55 C-75 N-80	.156 .156 .156 .156	1.751 1.751 1.751 1.751					5,240 6,820 8,910 9,440	5,290 7,280 9,920 10,590			.0030 .0030 .0030 .0030	335.75 335.75 335.75 335.75
2 3/8	2.375 2.375 2.375 2.375 2.375 2.375 2.375 2.375 2.375 2.375 2.375 2.375 2.375	$\begin{array}{c} 4.00\\ 4.60\\ 4.00\\ 4.60\\ 4.60\\ 5.80\\ 4.00\\ 4.60\\ 5.80\\ 4.60\\ 5.80\\ 4.60\\ 5.80\end{array}$	4.70 4.70 5.95 4.70 5.95 4.70 5.95 4.70 5.95	H-40 H-40 J-55 C-75 C-75 C-75 N-80 N-80 N-80 P-105 P-105	.167 .190 .167 .190 .254 .167 .190 .254 .190 .254 .190 .254	2.041 1.995 2.041 1.995 2.041 1.995 1.867 2.041 1.995 1.867 1.995 1.867	1.947 1.901 1.947 1.901 1.947 1.901 1.773 1.947 1.901 1.773 1.901 1.773	2.875 2.875 2.875 2.875 2.875 2.875 2.875 2.875 2.875 2.875 2.875 2.875 2.875	3.063 3.063 3.063 3.063 3.063 3.063 3.063 3.063	2.910 2.910 2.910 2.910 2.910 2.910 2.910 2.910 2.910	4,880 5,520 6,340 7,180 8,150 9,380 12,180 8,660 9,940 12,890 13,250 17,190	4,920 5,600 6,770 7,700 9,230 10,500 14,040 9,840 11,200 14,970 14,700 19,650	30,130 35,960 41,430 49,450 56,500 67,430 96,560 60,260 71,930 102,990 94,410 135,180	52,170 71,730 97,820 126,940 104,340 135,400 136,940 177,710	.0040 .0039 .0040 .0039 .0034 .0039 .0034 .0039 .0034 .0039 .0034	247.12 258.65 247.12 258.65 247.12 258.65 295.33 247.12 258.65 295.33 295.33 295.33
2 7/8	2.875 2.875 2.875 2.875 2.875 2.875 2.875 2.875 2.875 2.875	6.40 6.40 8.60 6.40 8.60 6.40 8.60 8.60	6.50 6.50 8.70 6.50 8.70 6.50 8.70 8.70	H-40 J-55 C-75 C-75 N-80 N-80 P-105 P-105	.217 .217 .308 .217 .308 .217 .308 .217 .308	2.441 2.441 2.259 2.441 2.259 2.441 2.259 2.441 2.259	2.347 2.347 2.165 2.347 2.165 2.347 2.165 2.347 2.165	3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500	3.668 3.668 3.668 3.668 3.668 3.668 3.668 3.668 3.668	3.460 3.460 3.460 3.460 3.460 3.460 3.460 3.460	5,230 6,800 8.900 12,200 9,420 12,920 12,560 17,220	5,280 7,260 9,910 14,060 10,570 15,000 13,870 19,690	52,780 72,580 98,970 149,360 105,570 159,310 138,560 209,100	72,480 99,660 135,900 185,290 144,960 198,710 190,260 260,810	.0058 .0058 .0058 .0050 .0058 .0050 .0058 .0050	172.76 172.76 201.72 172.76 201.72 172.76 201.72 172.76 201.72
3 1/2	3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500	7.70 9.20 10.20 7.70 9.20 10.20 7.70 9.20 10.20 12.70 10.20 10.20 10.20 12.70 9.20 12.70	9.30 9.30 9.30 12.95 9.30 12.95 9.30 12.95	H-40 H-40 J-55 J-55 C-75 C-75 C-75 C-75 N-80 N-80 N-80 N-80 P-105 P-105	.216 .254 .289 .216 .254 .254 .289 .375 .216 .254 .254 .375 .254 .375	3.068 2.992 2.992 3.068 2.992 2.992 2.992 2.750 3.068 2.992 2.750 2.992 2.750 2.992 2.750	2.943 2.867 2.797 2.943 2.867 2.943 2.867 2.797 2.625 2.943 2.867 2.797 2.625 2.943 2.867 2.797 2.625 2.867 2.625	4.250 4.250 4.250 4.250 4.250 4.250 4.250 4.250 4.250 4.250 4.250 4.250 4.250 4.250 4.250 4.250 4.250 4.250	4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500	4.180 4.180 4.180 4.180 4.180 4.180 4.180 4.180 4.180	4,070 5,050 5,680 5,290 6,560 7,390 6,690 8,530 9,660 12,200 7,080 9,080 10,230 12,920 12,920 12,110 17,200	4,320 5,080 5,780 5,940 6,980 7,950 8,100 9,520 10,840 14,060 8,640 10,160 11,560 11,560 13,330 19,690	65,070 79,540 92,550 89,470 109,370 127,250 122,010 149,140 173,530 230,990 130,140 159,090 185,100 246,390 208,800 323,390	103,610 142,460 194,260 276,120 207,220 294,530 217,970 386,570	.0091 .0087 .0083 .0091 .0087 .0083 .0091 .0087 .0083 .0091 .0087 .0083 .0073	$\begin{array}{c} 109.37\\ 114.99\\ 120.57\\ 109.37\\ 114.99\\ 120.57\\ 109.37\\ 114.99\\ 120.57\\ 136.12\\ 109.37\\ 114.99\\ 120.57\\ 136.12\\ 114.99\\ 136.12\\ \end{array}$
4	$\begin{array}{c} 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ \end{array}$	9.50 9.50 9.50 9.50	11.00 11.00 11.00 11.00	H-40 H-40 J-55 J-55 C-75 C-75 N-80 N-80	.226 .262 .226 .262 .226 .262 .226 .262	3.548 3.476 3.548 3.476 3.548 3.476 3.548 3.476 3.476	3.423 3.351 3.423 3.351 3.423 3.351 3.423 3.351	4.750 4.750 4.750 4.750	5.000 5.000 5.000 5.000		3,580 4,420 4,650 5,750 5,800 7,330 6,120 7,780	3,960 4,580 5,440 6,300 7,420 8,600 7,910 9,170	72,00 99,010 135,010 144,010	123,070 169,220 230,750 246,140	.0122 .0117 .0122 .0117 .0122 .0117 .0122 .0117	81.78 85.20 81.78 85.20 81.78 85.20 81.78 85.20
4 1/2	4.500 4.500 4.500 4.500	12.60 12.60 12.60 12.60	12.75 12.75 12.75 12.75	H-40 J-55 C-75 N-80	.271 .271 .271 .271	3.958 3.958 3.958 3.958	3.833 3.833 3.833 3.833	5.200 5.200 5.200 5.200	5.563 5.563 5.563 5.563 5.563		3,930 5,100 6,430 6,810	4,220 5,800 7,900 8,430	104,360 143,500 195,680 208,730	144,020 198,030 270,040 288,040	.0152 .0152 .0152 .0152	65.71 65.71 65.71 65.71

	OIL,	WATER	AND M	UD SPEC	CIFIC GR	AVITY - V	WEIGHT	AND PR	ESSURE	TABLE	
Degrees A. P. I.	Specific Gravity	Gallon	(Density) Cubic Foot Inds	Fluid He Height Per Pound Feet	ead Pressure Per Foot Lbs./Sq. In.	Degrees A. P. I.	Specific Gravity	Gallon	t (Density) Cubic Foot unds	Fluid Head Height Per Pound Feet	Pressure Per Foot Lbs./Sq. In.
60.	.739	6.16	46.1	3.13	.320		1.20	10.0	74.8	1.93	.519
59.	.743	6.20	46.4	3.11	.322		1.22	10.2	76.3	1.89	.530
58. 57.	.747 .751	6.23 6.26	46.6 46.8	3.09 3.08	.324 .325		1.25 1.27	10.4 10.6	77.8 79.3	1.85 1.81	.540 .551
56.	.755	6.30	47.1	3.06	.327		1.29	10.8	80.8	1.78	.561
55.	.759	6.33	47.4	3.04	.329		1.32	11.0	82.3	1.75	.571
54. 53.	.763	6.36	47.6	3.03	.330 .332		1.34	11.2	83.8	1.72	.582 .592
53.	.767 .771	6.40 6.43	47.9 48.1	3.01 2.99	.332		1.37 1.39	11.4 11.6	85.3 86.8	1.69 1.66	.603
52.	.775	6.46	48.1	2.99	.334		1.39	11.8	88.3	1.63	.631
50.	.780	6.51	48.7	2.96	.338		1.44	12.0	89.8	1.61	.623
49.	.784	6.54	48.9	2.94	.340		1.46	12.2	91.3	1.58	.634
48. 47.	.788 .793	6.57 6.61	49.2 49.5	2.93 2.92	.341 .343		1.49 1.51	12.4 12.6	92.8 94.3	1.55 1.53	.644 .655
46.	.797	6.65	49.3	2.92	.345		1.53	12.0	94.3	1.50	.665
45.	.802	6.69	50.0	2.87	.348		1.56	13.0	97.3	1.48	.675
44.	.806	6.72	50.3	2.87	.349		1.58	13.2	98.7	1.46	.686
43. 42.	.811 .816	6.76 6.81	50.6 50.9	2.85 2.82	.351 .354		1.61 1.63	13.4 13.6	100. 102.	1.44 1.42	.696 .706
42.	.820	6.84	51.2	2.82	.355		1.65	13.8	102.	1.39	.717
40.	.825	6.88	51.5	2.80	.357		1.68	14.0	105.	1.38	.727
39.	.830	6.92	51.8	2.79	.359		1.70	14.2	106.	1.36	.738
38. 37.	.835 .840	6.96 7.01	52.1 52.4	2.76 2.75	.362 .364		1.73 1.75	14.4 14.6	108. 109.	1.34 1.32	.748 .758
36.	.845	7.05	52.4	2.73	.366		1.77	14.8	103.	1.30	.769
35.	.850	7.09	53.0	2.72	.368		1.80	15.0	112.	1.28	.779
34.	.855	7.13	53.3	2.70	.370		1.82	15.2	114.	1.27	.790
33. 32.	.860 .865	7.17 7.21	53.6 53.9	2.69 2.67	.372 .375		1.85 1.87	15.4 15.6	115. 117.	1.25 1.23	.800 .810
32.	.871	7.21	54.3	2.67	.375		1.89	15.8	117.	1.23	.821
30.	.876	7.31	54.7	2.63	.380	Common	1.92	16.0	120.	1.20	.831
29.	.882	7.36	55.1	2.62	.382	Cement	1.94	16.2	121.	1.19	.842
28. 27.	.887 .893	7.40 7.45	55.4 55.7	2.60 2.58	.384 .387	Slurry J	1.97 1.99	16.4 16.6	123. 124.	1.17 1.16	.852 .862
26.	.898	7.49	56.0	2.57	.389		2.01	16.8	124.	1.15	.873
25.	.904	7.54	56.4	2.55	.392		2.04	17.0	127.	1.13	.883
24.	.910	7.59	56.8	2.54	.394		2.06	17.2	129.	1.12	.894
23. 22.	.916 .922	7.64 7.69	57.2 57.5	2.52 2.51	.397 .399		2.09 2.11	17.4 17.6	130. 132.	1.11 1.09	.904 .914
21.	.928	7.74	57.9	2.49	.402		2.13	17.8	133.	1.08	.925
20.	.934	7.79	58.3	2.47	.405		2.16	18.0	135.	1.07	.935
19. 18.	.940 .946	7.84 7.89	58.7 59.0	2.46 2.44	.407 .410		2.18 2.21	18.2 18.4	136. 138.	1.06 1.05	.945 .956
18.	.946 .953	7.89 7.95	59.0 59.5	2.44	.410		2.21	18.4	138.	1.05	.966
16.	.959	8.00	59.8	2.40	.416		2.25	18.8	141.	1.02	.977
15.	.966	8.06	60.3	2.39	.419		2.28	19.0	142.	1.01	.987
14. 13.	.973 .979	8.11 8.16	60.7 61.0	2.38 2.36	.421 .424		2.30 2.33	19.2 19.4	144. 155.	1.00 .992	.997 1.01
12.	.986	8.22	61.5	2.34	.427		2.35	19.6	147.	.982	1.02
11.	.993	8.28	61.9	2.33	.430		2.37	19.8	148.	.972	1.03
10° A. P. I. or	1.00	8.34	62.4	2.31	.433		2.40	20.0	150.	.962	1.04
	1.01 1.03	8.4 8.6	62.8 64.3	2.29 2.24	.436 .447		2.42 2.45	20.2 20.4	151. 153.	.953 .943	1.05 1.06
	1.06	8.8	65.8	2.19	.457		2.43	20.4	154.	.935	1.07
	1.08	9.0	67.3	2.14	.468		2.49	20.8	156.	.925	1.08
	1.10	9.2	68.8	2.09	.478		2.52	21.0	157.	.917	1.09
	1.13 1.15	9.4 9.6	70.3 71.8	2.05 2.00	.488 .499		2.54 2.57	21.2 21.4	159. 160.	.908 .899	1.10 1.11
Salt Water }	1.154	9.625	72.0	2.00	.500		2.59	21.6	162.	.891	1.12
	1.18	9.8	73.3	1.96	.509		2.61	21.8	163.	.883	1.13

GAS TABLE

To find the bottomhole pressure, multiply the surface by the factor corresponding to the Well depth and gravity of the gas

	C	orrection Factors	3		Correction Factors			
Well Depth	0.6 Gravity	0.7 Gravity	0.8 Gravity	Well Depth	0.6 Gravity	0.7 Gravity	0.8 Gravity	
4,500	1.099	1.116	1.132	7,500	1.171	1.195	1.227	
5,000	1.110	1.130	1.149	8,000	1.181	1.210	1.241	
5,500	1.120	1.141	1.163	8,500	1.190	1.230	1.260	
6,000	1.132	1.155	1.181	9,000	1.202	1.240	1.273	
6,500	1.143	1.175	1.195	9,500	1.215	1.250	1.285	
7,000	1.155	1.184	1.211	10,000	1.225	1.265	1.305	

	0011			TO OIL COUNTRY			
Acre	=	43,560.	Square feet	Horse power	=	.7457	Kilo Watt
Acre	=	4,047.	Square meter	Horse power hour	=	2,547.	British Thermal Unit
Acre foot	=	7,758.	Barrels	Inch	=	2.540	Centimeters
Atmosphere	=	33.94	Feet of water	Inch of mercury	=	1.134	Feet of water
Atmosphere	=	29.92	Inches of mercury	Inch of mercury	=	.4912	Pound per square inch
Atmosphere	=	760.0	Millimeters of mercury	Inch of water 60°F	=	.0361	Pound per square inch
Atmosphere	=	14.70	Pounds per square inch	Kilogram	=	2.2046	Pounds
Bar	=	14.504	Pounds per square inch	Kilogram calorie	=	3.968	British Thermal Units
Barrel	=	5.6146	Cubic feet	Kilogram per sq. centimeter	=	14.223	Pounds per square inch
Barrel	=	42.0	Gallons	Kilometer	=	3,281.	Feet
Barrel of water @ 60°f	=	.1588	Metric ton	Kilometer	=	.2614	Miles
Barrel (360 A. P. I.)	=	.1342	Metric ton	Kilo Pascal (KPa)	=	0.145	Pounds per square inch
Barrel per hour	=	.0936	Cubic feet per minute	Kilo weight	=	1.341	Horse power
Barrel per hour	=	.700	Gallon per minute	Liter	=	.2642	Gallon
Barrel per hour	=	2.695	Cubic inches per second	Liter	=	1.0567	Quarters
Barrel per day	=	.02917	Gallon per minute	Mega Pascal (MPa)	=	145.03	Pound per square inch
British Thermal Unit	=	.2520	Kilogram calorie	Meter	=	3.281	Feet
British Thermal Unit	=	.2928	Watt hour	Meter	=	39.37	Inches
B.T.U. per minute	=	.02356	Horse power	Mile	=	5,280.	Feet
Centimeter	=	.3937	Inch	Mile	=	1.609	Kilometers
Centimeter of mercury	=	.1934	Pound per square inch	Mile per hour	=	1.4667	Feet per second
Cubic centimeter	=	.06102	Cubic inch	Ounce (Avoirdupois)	=	28.3495	Grams
Cubic foot	=	.1781	Barrel	Part per Million	=	.05835	Grain per gallon
Cubic foot	=	7.4805	Gallons (U. S.)	Part per Million	=	8.345	Pounds per million gallon
Cubic foot	=	.02832	Cubic meter	Pascal (Pa)	=	0.000145	Pounds per square inch
Cubic foot	=	.9091	Sacks cement (Set)	Pounds	=	7,000.	Grains
Cubic foot per minute	=	10.686	Barrels per hour	Pounds	=	.4536	Kilogram
Cubic foot per minute	=	28.800	Cubic inches per second	Pound per square inch	=	2.309	Feet of water 60°F
Cubic foot per minute	=	7.481	Gallons per minute	Pound per square inch	=	2.0353	Inches of mercury
Cubic inch	=	16.387	Cubic centimeters	Pound per square inch	=	51.697	Millimeters of mercury
Cubic meter	=	6.2897	Barrels	Pound per square inch	=	.0703	Kilograms per sq. cms.
Cubic meter	=	35.341	Cubic feet	Pound per square inch	=	0.0689	Bar
Cubic meter	=	1.308	Cubic yards	Pound per square inch	=	.006895	Mega Pascal (MPa)
Cubic meter	=	264.20	Gallons (U. S.)	Pound per square inch	=	6.895	Kilo Pascal (KPa)
Cubic meter, normal	=	34.77	Cubic feet, standard	Pound per square inch	=	6895.	Pascal (Pa)
Cubic yard	=	4.8089	Barrels	Pound per million gallons	=	.00700	Grain per gallon
Cubic yard	=	46.656	Cubic inches	Pound per million gallons	=	.11982	Parts per million
Cubic yard	=	.7646	Cubic meter	Quarter (Liquid)	-	.946	Liter
Foot	=	30.48	Centimeters	Sack cement (set)	=	1.1	Cubic feet
Foot	=	.3048	Meter	Square centimeter	=	1.550	Square inch
Foot of water @ 60°F	=	.4331	Pound per square inch	Square foot	=	.929	Square meter
Foot per second	=	.68182	Mile per hour	Square inch	-	6.452	Square centimeters
Foot pound	=	.001286	British Thermal Unit	Square kilometer	=	.3861	Square mile
Foot pound per second	_	.001200	Horse power	Square meter	=	10.67	Square feet
Gallon (U. S.)	_	.02381	Barrel	Square mile	=	2.590	Square kilometers
Gallon (U. S.)	=	.1337	Cubic feet	Temperature Centigrade	=		5/9 (Temperature °F -32)
Gallon (U. S.)	=	231.000	Cubic inches	Temperature Fahrenheit	=		9/5 (Temperature °C) +32
Gallon (U. S.)	=	3.785	Liters	Temp. Absolute (Kelvin)	=		Temperature °C +273
()		.8327	Gallon (Imperial)	Temp. Absolute (Rankine)	=		Temperature °F +460
Gallon (U. S.)	=		× 1 /	Ton (Long)		2,240.	Pounds
Gallon (U. S.)	=	0.003785	Cubic meters	Ton (Metric)	=	2,240.	Pounds
Gallon (Imperial)	-	1.2009	Gallon (U. S.)	Ton (Short or Net)		2,205.	Pounds
Gallon (Imperial)	=	277.274	Cubic inches	()	=		Tons (Short on Net)
Gallon per minute	=	1.429	Barrels per hour	Ton (Metric)	=	1.102	· · · · ·
Gallon per minute	=	.1337	Cubic feet per minute	Ton (Metric)	=	1,000.	Kilograms
Gallon per minute	=	34.286	Barrels per day	Ton (Metric)	=	6.297	Barrels of water @ 60°F
Gram	=	.03527	Ounce	Ton (Metric)	=	7,454.	Barrels (36° A. P. I.)
Horse power	=	42.44	T. U.'s per minute	Ton (Short or Net)	=	.907	Ton (Metric)
Horse power	=	33,000.	Foot-pounds per minute	Watt - Hour	=	3,415.	British Thermal Unit
Horse power	=	550.	Foot pounds per seconds	Yard	=	.9144	Meter
Horse power	=	1.014	Horse power (metric)				

Metric P. I. in
$$\frac{M^3 / D}{Kg / Cm^2}$$
 x .428 = US P. I. in BPD / PSI

Metric GLR in $\frac{NM^3 / D}{M^3}$ x .5.529 = US GLR in scf / bbl

TEMPERATURE CORRECTION FACTOR $T_f = V$	520
TEMPERATURE CORRECTION FACTOR $I_f = V$	T _V + 460

TEMP. °F	Tf	TEMP. °F	Tf	TEMP. °F	Tf
60	1.000	130	.939	195	.891
65	.995	135	.935	200	.888
70	.990	140	.931	205	.885
75	.986	145	.927	210	.881
80	.981	150	.923	215	.878
85	.977	155	.920	220	.875
90	.972	160	.916	225	.872
100	.964	165	.912	230	.868
105	.959	170	.909	235	.865
110	.955	175	.905	240	.862
115	.951	180	.902	245	.859
120	.947	185	.898	250	.857
125	.943	190	.894		

USEFUL GAS LIFT VALVE EQUATIONS USING API SYMBOLS

 $\frac{A_{p}}{A_{b}} = \frac{Piod - Pvc}{Piod - Ppd}$

$$\mathsf{Ppef} = \frac{\mathsf{Ap}}{\mathsf{Ab} - \mathsf{Ap}} = \frac{\mathsf{Ap} / \mathsf{Ab}}{1 - (\mathsf{Ap} / \mathsf{Ab})}$$

 $P_{iod} = \frac{Pvc - (A_p / A_b) Pbd}{1 - (A_p / A_b)}$

 $P_{pd} = \frac{Pvc - Piod (1 - (A_p / A_b))}{A_p / A_b}$

 $\mathsf{P}_{\mathsf{VO}} = \frac{\mathsf{Pvc}}{1 - (\mathsf{A}_{\mathsf{p}} / \mathsf{A}_{\mathsf{b}})}$

 $P_{vc} = P_{iod} - (A_p / A_b (P_{iod} - P_{pd}))$

Where: A_b = bellows area, in²

 A_p = area of seat or port – ball seat contact, in²

Piod = operating gas injection pressure at valve, psig

 P_{pd} = operating production pressure at valve, psig

P_{pef} = production pressure effect factor (formerly Spm or TEF

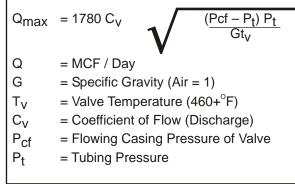
P_{VC} = valve closing pressure, psig

P_{VO} = test rack set opening pressure, psig (formerly Ptro)

VALVE AND SEAT SPECIFICATIONS

LN Series Valve VALVE AND SEAT SPECIFICATIONS

Туре	Trim	Port Dia.	*
	Size	(inches)	Fe
LN-21R	Small	0.582	0.34
	Medium	0.670	0.46
	Large	0.775	0.60
LNM-31R	Small	0.300	0.27
	Medium	0.360	0.38
	Large	0.410	0.48


* Fe = Dynamic Ap / Ab

N Series Valve VALVE AND SEAT SPECIFICATIONS

Type Valve	Bellows Area In ²	Port Dia. (inches)	Ap/Ab
		8/64	.017
		10/64	.020
N-15 &		12/64	.038
N-15R	77	16/64	.067
		20/64	.103
		24/64	.148
		28/64	.200
		32/64	.261
		8/64	.043
NM-16 &		12/64	.094
NM-16 R	.31	16/64	.166
		20/64	.256
		24/64	.368

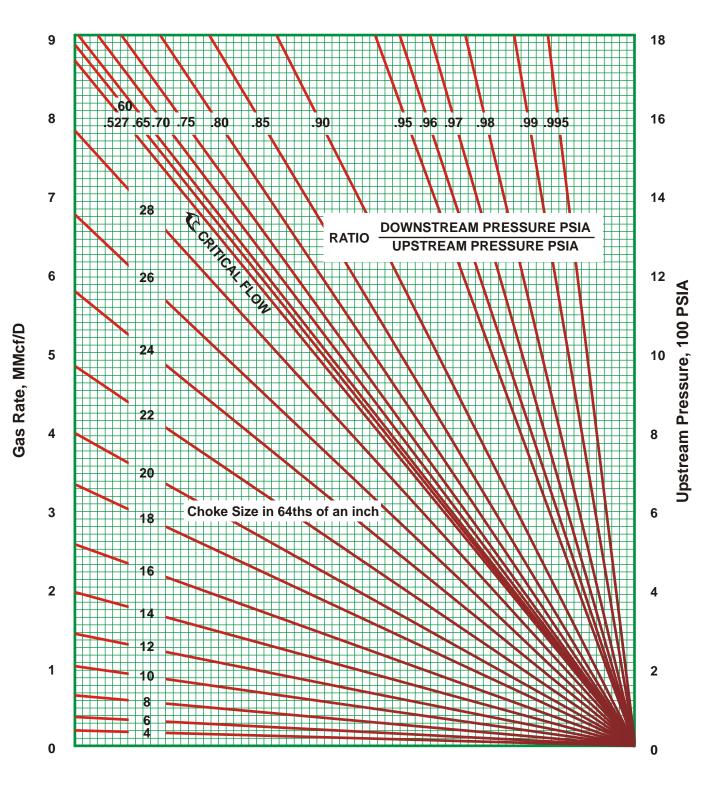
RV Series Valves PERFORMANCE DATA AND VALVE SPECIFICATIONS

The maximum flow rate can be calculated using the following formula. Use Cv from the chart for the particular valve and choke size used.

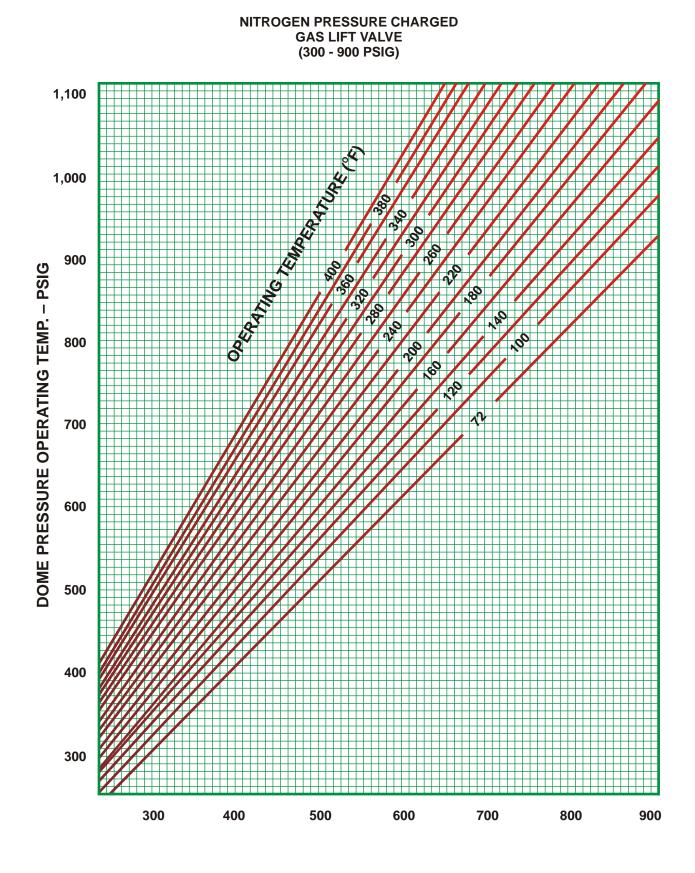
No. of 1/8-inch		RVM-16R			
D Orifices	Cv	Area	Equiv. Dia		
1	.0102	.0123	.0125		
2	.0162	.0245	.0177		
3	.0202	.0368	.0217		
4	.0222	.0491	.0250		

WF Series Valve VALVE AND SEAT SPECIFICATIONS WF-14R

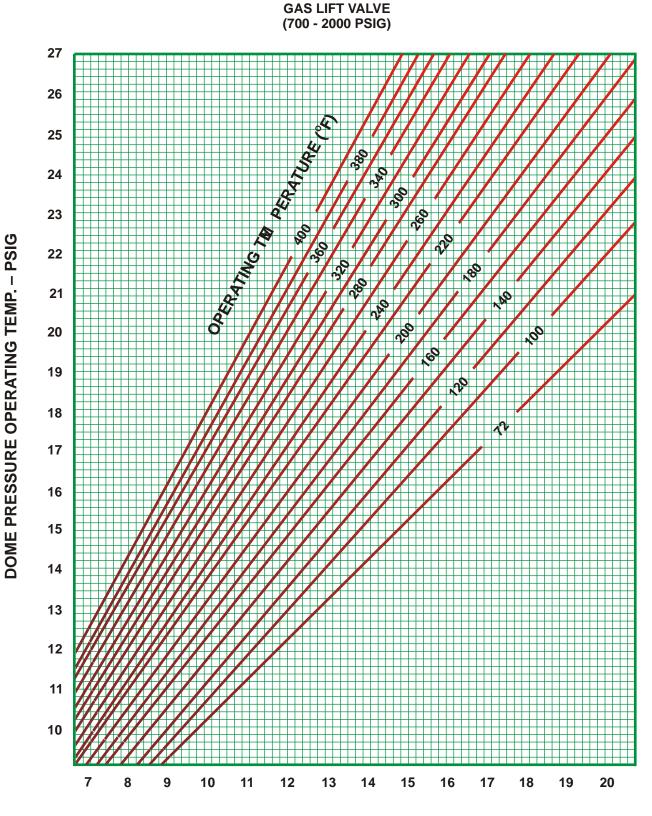
Ball Dia.	Seat Angle	Bellows Area, In ²	Ap/Ab	Bellows Area, In ²	Ap/Ab
16/64	37 [°]		.058		.078
20/64	37 [°]	.31	.090	.23	.122
24/64	38 [°]	Adj. Range	.135	Adj. Range	.183
24/64	45°	0-800	.177	600-1500	.239
32/64	38 ⁰	psi	.242	psi	.326
32/64	45°		.316		.426


WFM-14R

Ball Dia.	Seat Angle	Bellows Area, In ²	Ap/Ab
16/64	37 [°]		.150
18/64	37°	.12	.183
20/64	37°	Adj. Range	.233
24/64	37°	0-1500 psi	.333


GAS RATE THROUGH CHOKES

AFTER THORNHILL CRAVER TEMP 60°F SpG. 6 14.7 PSIA


TEMPERATURE CORRECTION CHART

TEMPERATURE CORRECTION CHART

NITROGEN PRESSURE CHARGED

DOME PRESSURE AT 60°F - 100 PSIG

CALIBRATION & TESTING OF GAS LIFT VALVES

Parveen GLV test bench is manufactured from heavy duty stainless steel sheet metal, pressure gauges with all stainless steel fittings and valves. Test bench is designed to meet most of the test / calibration requirements of API spec. 11 V1 for GLV's. This is combination of typical sleeve tester, typical encapsulated stem-seat leakage tester and also built-in pressure chamber (ager). Our GLV test bench provides testing facility for following parameters:

- 1. Charging bellows to specific nitrogen pressure
- 2. Valve opening pressure
- 3. Valve closing pressure
- 4. Valve leakage test
- 5. Hydrostatic valve test

TOOLS/ACCESSORIES WITH TEST BENCH

A) Chamber Valve Removing

B) Pressure Releasing & Charging Tool

DESIGN PARAMETERS

Parveen Test Bench is designed in accordance with following design parameters as per API spec. 11 V1.

Design parameters:

- 1. Valve Size: 1" and 11/2" conventional & retrievable nitrogen charged gas lift valves.
- 2. System Accuracy: \pm 100 psi for aging chamber \pm 5 psi for calibration and charging of gas lift valves.
- 3. Maximum Bellow Charge: 2000psi
- 4. Maximum Chamber Hydro test: 5000 psi
- 5. Valve/Bellow Stabilizing /Storing Capacity: 10 nos (max.)

CONSTRUCTIONAL FEATURES OF GLV TEST BENCH

There are four sections of test bench as follows :

- 1. Gauge Section
- 2. Chamber Section
- 3. Control Valves Section and
- 4. Inlet Section

i) PRESSURE GAUGE SECTION

Used in the test bench as follows:

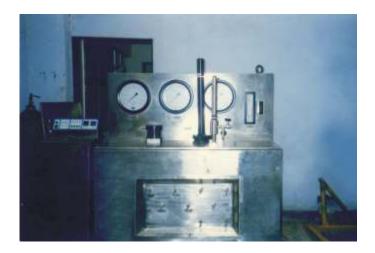
A) Hydraulic Pressure Gauge: (Range: 0-10,000 psi)

This pressure gauge shows the pressure in hydraulic pressure chamber (ager).

B) Casing Pressure Gauge: (Range: 0-2000 psi)

This pressure gauge shows casing pressure in typical sleeve tester and typical encapsulated tester for stemseat leakage test of gas lift valve.

C) Tubing pressure gauge (Range: 0-2000psi)


To indicate tubing pressure in the glv this pressure gauge is used.

ii) CHAMBER SECTION

As shown in above figure there are three testing devices provided in our GLV test bench

- A) Hydraulic Pressure Chamber (Ager)
- B) Encapsulated Stem-seat Leakage Tester
- C) Sleeve Tester

iii) CONTROL VALVE SECTION

There are nine control valves systematically arranged as shown in above figure having specific functions of each one, used to operate test bench for different testings of GLV.

- 1. Hydraulic Exhaust/Bleed
- 2. Tubing Pressure Exhaust
- 3. On/Off For Sleeve, Stem-Seat Leakage
- 4. Gas Pressure Tubing
- 5. Leak Test
- 6. Casing Pressure On
- 7. For Sleeve Tester
- 8. Casing Pressure Exhaust
- 9. Hydraulic Pressure On/Off

iv) INLET SECTION

In this section there are three inlet provided with $\frac{1}{2}$ " NPT for external connection and also two outlets/ exhausts provided.

1. N2 Inlet:

From this inlet we can give nitrogen supply upto 2000 psi for GLV leak test and for valve setting & bellow stabilization.

2. Orifice:

Here 1/16" orifice is provided for tubing pressure exhaust.

3. Hydraulic Exhaust:

It is used to exhaust hydraulic pressure in ager.

4) Air Inlet:

Air supply of 100 psi from air hydraulic pump can be applied through this inlet.

5) water inlet:

From this inlet we can supply water for inside pressure pump.

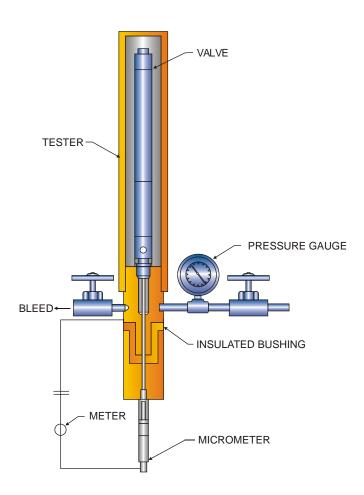
APPARATUS

Pressure Chamber (Ager)

Tills device is a water filled chamber for maximum 5000 psi pressure. The Gas Lift Valves are inserted into the chamber and subjected to a predetermined external pressure for some length of time and number of cycles.

Test Rack

This equipment is used to set the opening or closing pressure of nitrogen charged valves. There are two types in use: Typical sleeve tester (M-010) and typical encapsulated stem and seat leakage tester (M-011), those are arranged in our test bench very conveniently.


Water Bath

This is a water filled container where several gas lift valves are immersed in the water to bring them to a predetermined controlled temperature. Since most gas lift installations design the GLV set pressure at 16°c, the temperature of the water bath is usually controlled at 16°c.

PROBE TESTER

Introduction:

The purpose of the gas lift valve probe tester is to determine the relative "stiffness" of a gas lift valve and to determine the maximum available travel of the stem top. When gas pressure is admitted to the tester, it acts on the full area of the valve bellows to lift the stem off the seat. When this pressure increased, the stem tip lifts further from the seat. By using the valve probe tester, an accurate measure of the stem tip travel per pressure increase can be determined and the results tabulated and plotted.

When the pressure is plotted as the ordinate and the stem tip travel as the abscissa, a relatively straight line will be generated for the majority of the stem tip travel. The slope of this line is an indication of the "stiffness" of the valve. The numerical value of the slope is called the bellows assembly load rate (blr) and is measured in psig/inch [kpa/mm]. In this context, the "bellows assembly" includes the bellows and the system which applies a load to hold the valve stem on the seat. The higher the load rate, the "stiffer" the valve and inversely, the lower the lower the load rate, the "softer" the valve.

If the above is done with the same valve, except that opening pressure (dome charge or spring setting) is varied, then the effect of dome charge pressure or spring setting on the bellows assembly load rate can be compared for the same type valve when set for different opening pressures. The bellows assembly load rate is a practical value that can be used to compare different types of valves or when evaluating the same valve under different load conditions and when designing the gas lift installation.